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Chapter 1

Lagrangian Field Theory

1.1 Units

We start with the most basic thing of all, namely units and concentrate
on the units most widely used in particle physics and quantum field the-
ory (natural units). We also mention the units used in General Relativity,
because these days it is likely that students will study this subject as well.

Some useful quantities are [PPDB]:
h̄ ≡ h

2π = 1.055× 10−34J sec = 6.582× 10−22MeV sec
c = 3× 108 m

sec .
1 eV = 1.6× 10−19J
h̄c = 197MeV fm
1fm = 10−15m
1barn = 10−28m2

1mb = .1fm2

1.1.1 Natural Units

In particle physics and quantum field theory we are usually dealing with
particles that are moving fast and are very small, i.e. the particles are both
relativistic and quantum mechanical and therefore our formulas have lots
of factors of c (speed of light) and h̄ (Planck’s constant). The formulas
considerably simplify if we choose a set of units, called natural units where
c and h̄ are set equal to 1.

In CGS units (often also called Gaussian [Jackson appendix] units), the
basic quantities of length, mass and time are centimeters (cm), gram (g),
seconds (sec), or in MKS units these are meters (m), kilogram (kg), seconds.
In natural units the units of length, mass and time are all expressed in GeV.
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8 CHAPTER 1. LAGRANGIAN FIELD THEORY

Example With c ≡ 1, show that sec = 3× 1010cm.

Solution c = 3× 1010cm sec−1. If c ≡ 1

⇒ sec = 3× 1010cm

We can now derive the other conversion factors for natural units, in which h̄
is also set equal to unity. Once the units of length and time are established,
one can deduce the units of mass from E = mc2. These are

sec = 1.52× 1024GeV −1

m = 5.07× 1015GeV −1

kg = 5.61× 1026GeV

(The exact values of c and h̄ are listed in the [Particle Physics Booklet] as
c = 2.99792458× 108m/sec and h̄ = 1.05457266× 10−34Jsec= 6.5821220×
10−25GeV sec. )
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Example Deduce the value of Newton’s gravitational constant
G in natural units.

Solution It is interesting to note that the value of G is one of the
least accurately known of the fundamental constants. Whereas,
say the mass of the electron is known as [Particle Physics Book-
let] me = 0.51099906MeV/c2 or the fine structure constant as
α = 1/137.0359895 and c and h̄ are known to many decimal
places as mentioned above, the best known value of G is [PPDB]
G = 6.67259× 10−11m3kg−1sec−2, which contains far fewer dec-
imal places than the other fundamental constants.

Let’s now get to the problem. One simply substitutes the con-
version factors from before, namely

G = 6.67× 10−11m3kg−1sec−2

=
6.67× 10−11(5.07× 1015GeV −1)3

(5.61× 1026GeV )(1.52× 1024GeV −1)2

= 6.7× 10−39GeV −2

=
1

M2
Pl

where the Planck mass is defined as MPl ≡ 1.22× 1019GeV .

Natural units are also often used in cosmology and quantum gravity
[Guidry 514] with G given above as G = 1

M2
Pl

.
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1.1.2 Geometrical Units

In classical General Relativity the constants c and G occur most often and
geometrical units are used with c and G set equal to unity. Recall that in
natural units everything was expressed in terms of GeV . In geometrical
units everything is expressed in terms of cm.

Example Evaluate G when c ≡ 1.

Solution

G = 6.67× 10−11m3kg−1sec−2

= 6.67× 10−8cm3g−1sec−2

and when c ≡ 1 we have sec = 3× 1010cm giving

G = 6.67× 10−8cm3g−1(3× 1010cm)−2

= 7.4× 10−29cm g−1

Now imposing G ≡ 1 gives the geometrical units

sec = 3× 1010cm

g = 7.4× 10−29cm

It is important to realize that geometrical and natural units are not com-
patible. In natural units c = h̄ = 1 and we deduce that G = 1

M2
Pl

as
in a previous Example. In geometrical units c = G = 1 we deduce that
h̄ = 2.6× 10−66cm2. (see Problems) Note that in these units h̄ = L2

Pl where
LPl ≡ 1.6× 10−33cm. In particle physics, gravity becomes important when
energies (or masses) approach the Planck mass MPl. In gravitation (General
Relativity), quantum effects become important at length scales approaching
LPl.



1.2. COVARIANT AND CONTRAVARIANT VECTORS 11

1.2 Covariant and Contravariant vectors

The subject of covariant and contravariant vectors is discussed in [Jackson],
which students should consult for a thorough introduction. In this section
we summarize the basic results.

The metric tensor that is used in this book is

ηµν = ηµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


Contravariant vectors are written in 4-dimensional form as

Aµ = (Ao, Ai) = (Ao, ~A)

Covariant vectors are formed by “lowering” the indices with the metric ten-
sor as in

Aµ = gµνA
ν = (Ao, Ai) = (Ao,−Ai) = (Ao,− ~A)

noting that

Ao = Ao

Thus

Aµ = (Ao, ~A) Aµ = (Ao,− ~A)

Now we discuss derivative operators, denoted by the covariant symbol
∂µ and defined via

∂

∂xµ
≡ ∂µ = (∂o, ∂i) = (

∂

∂xo
,
∂

∂xi
) = (

∂

∂t
, ~5)

The contravariant operator ∂µ is given by

∂

∂xµ
≡ ∂µ = (∂o, ∂i) = gµν∂ν = (

∂

∂xo
,
∂

∂xi
) = (

∂

∂xo
,− ∂

∂xi
) = (

∂

∂t
,−~5)

Thus

∂µ = ( ∂∂t , ~5) ∂µ = ( ∂∂t ,−~5)
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The length squared of our 4-vectors is

A2 ≡ AµAµ = AµAµ = A2
o − ~A2

and

∂2 ≡ ∂µ∂µ ≡ 22 =
∂2

∂t2
−52 (1.1)

Finally, note that with our 4-vector notation, the usual quantum mechanical
replacements

pi → ih̄∂i ≡ −ih̄~5

and

po → ih̄∂o = ih̄
∂

∂t

can be succintly written as

pµ → ih̄∂µ

giving (with h̄ = 1)

p2 → −22

1.3 Classical point particle mechanics

1.3.1 Euler-Lagrange equation

Newton’s second law of motion is

~F =
d~p

dt

or in component form (for each component Fi)

Fi =
dpi
dt

where pi = mq̇i (with qi being the generalized position coordinate) so that
dpi
dt = ṁq̇i + mq̈i. (Here and throughout this book we use the notation
ẋ ≡ dx

dt .) If ṁ = 0 then Fi = mq̈i = mai. For conservative forces ~F = −~5U
where U is the scalar potential. Rewriting Newton’s law we have

−dU
dqi

=
d

dt
(mq̇i)
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Let us define the Lagrangian L(qi, q̇i) ≡ T −U where T is the kinetic energy.
In freshman physics T = T (q̇i) = 1

2mq̇
2
i and U = U(qi) such as the harmonic

oscillator U(qi) = 1
2kq

2
i . That is in freshman physics T is a function only

of velocity q̇i and U is a function only of position qi. Thus L(qi, q̇i) =
T (q̇i) − U(qi). It follows that ∂L

∂qi
= − dU

dqi
and ∂L

∂q̇i
= dT

dq̇i
= mq̇i = pi. Thus

Newton’s law is

Fi =
dpi
dt

∂L

∂qi
=

d

dt
(
∂L

∂q̇i
)

with the canonical momentum defined as

pi ≡
∂L

∂q̇i

The next to previous equation is known as the Euler-Lagrange equation of
motion and serves as an alternative formulation of mechanics [Goldstein]. It
is usually written

d

dt
(
∂L

∂q̇i
)− ∂L

∂qi
= 0

or just

ṗi =
∂L

∂qi

We have obtained the Euler-Lagrange equations using simple arguments.
A more rigorous derivation is based on the calculus of variations [Ho-Kim47,
Huang54,Goldstein37, Bergstrom284] as follows.

In classical point particle mechanics the action is

S ≡
∫ t2

t1
L(qi, q̇i, t)dt

where the Lagrangian L is a function of generalized coordinates qi, general-
ized velocities q̇i and time t.

According to Hamilton’s principle, the action has a stationary value for
the correct path of the motion [Goldstein36], i.e. δS = 0 for the correct path.
To see the consequences of this, consider a variation of the path [Schwabl262,
BjRQF6]

qi(t)→ q′i(t) ≡ qi(t) + δqi(t)
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subject to the constraint δqi(t1) = δqi(t2) = 0. The subsequent variation in
the action is (assuming that L is not an explicit function of t)

δS =
∫ t2

t1
(
∂L

∂qi
δqi +

∂L

∂q̇i
δq̇i)dt = 0

with δq̇i = d
dtδqi and integrating the second term by parts yields∫

∂L

∂q̇i
δq̇idt =

∫
∂L

∂q̇i
d(δqi) (1.2)

=
∂L

∂q̇i
δqi|t2t1 −

∫
δqid(

∂L

∂q̇i
)

= 0−
∫
δqi

d

dt
(
∂L

∂q̇i
)dt

where the boundary term has vanished because δqi(t1) = δqi(t2) = 0. We
are left with

δS =
∫ t2

t1

[
∂L

∂qi
− d

dt
(
∂L

∂q̇i
)
]
δqidt = 0

which is true for an arbitrary variation δqi indicating that the integral must
be zero, which yields the Euler-Lagrange equations.

1.3.2 Hamilton’s equations

We now introduce the Hamiltonian H defined as a function of p and q as

H(pi, qi) ≡ piq̇i − L(qi, q̇i) (1.3)

For the simple case T = 1
2mq̇

2
i and U 6= U(q̇i) we have pi ∂L∂q̇i = mq̇i so that

T = p2
i

2m and piq̇i = p2
i
m so that H(pi, qi) = p2

i
2m + U(qi) = T + U which is the

total energy. Hamilton’s equations of motion immediately follow as

∂H

∂pi
= q̇i

Now L 6= L(pi) and ∂H
∂qi

= − ∂L
∂qi

so that our original definition of the canon-
ical momentum above gives

−∂H
∂qi

= ṗi
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1.4 Classical Field Theory

Scalar fields are important in cosmology as they are thought to drive in-
flation. Such a field is called an inflaton, an example of which may be the
Higgs boson. Thus the field φ considered below can be thought of as an
inflaton, a Higgs boson or any other scalar boson.

In both special and general relativity we always seek covariant equations
in which space and time are given equal status. The Euler-Lagrange equa-
tions above are clearly not covariant because special emphasis is placed on
time via the q̇i and d

dt(
∂L
∂q̇i

) terms.
Let us replace the qi by a field φ ≡ φ(x) where x ≡ (t,x). The generalized

coordiante q has been replaced by the field variable φ and the discrete index
i has been replaced by a continuously varying index x. In the next section
we shall show how to derive the Euler-Lagrange equations from the action
defined as

S ≡
∫
Ldt

which again is clearly not covariant. A covariant form of the action would
involve a Lagrangian density L via

S ≡
∫
Ld4x =

∫
Ld3xdt

where L = L(φ, ∂µφ) and with L ≡
∫
Ld3x. The term − ∂L

∂qi
in the Euler-

Lagrange equation gets replaced by the covariant term − ∂L
∂φ(x) . Any time

derivative d
dt should be replaced with ∂µ ≡ ∂

∂xµ which contains space as well
as time derivatives. Thus one can guess that the covariant generalization of
the point particle Euler-Lagrange equation is

∂µ
∂L

∂(∂µφ)
− ∂L
∂φ

= 0

which is the covariant Euler-Lagrange equation for a field φ. If there is more
than one scalar field φi then the Euler-Lagrange equations are

∂µ
∂L

∂(∂µφi)
− ∂L

∂φi
= 0

To derive the Euler-Lagrange equations for a scalar field [Ho-Kim48, Gold-
stein548], consider an arbitrary variation of the field [Schwabl 263; Ryder
83; Mandl & Shaw 30,35,39; BjRQF13]

φ(x)→ φ′(x) ≡ φ(x) + δφ(x)
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again with δφ = 0 at the end points. The variation of the action is (assuming
that L is not an explicit function of x)

δS =
∫ X2

X1

[
∂L
∂φ

δφ+
∂L

∂(∂µφ)
δ(∂µφ)

]
d4x = 0

where X1 and X2 are the 4-surfaces over which the integration is performed.
We need the result

δ(∂µφ) = ∂µδφ =
∂

∂xµ
δφ

which comes about because δφ(x) = φ′(x)− φ(x) giving

∂µδφ(x) = ∂µφ
′(x)− ∂µφ(x) = δ∂µφ(x)

showing that δ commutes with differentiation ∂µ. Integration by parts on
the second term is a bit more complicated than before for the point particle
case, but the final result is (see Problems)

δS =
∫ X2

X1

[
∂L
∂φ
− ∂µ

∂L
∂(∂µφ)

]
δφ d4x = 0

which holds for arbitrary δφ, implying that the integrand must be zero,
yielding the Euler-Lagrange equations.

In analogy with the canonical momentum in point particle mechanics,
we define the covariant momentum density

Πµ ≡ ∂L
∂(∂µφ)

so that the Euler-Lagrange equations become

∂µΠµ =
∂L
∂φ

The canonical momentum is defined as

Π ≡ Π0 =
∂L
∂φ̇

The energy momentum tensor is (analagous to the definition of the point
particle Hamiltonian)

Tµν ≡ Πµ∂νφ− gµνL
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with the Hamiltonian density

H ≡
∫
Hd3x

H ≡ T00 = Πφ̇− L

In order to illustrate the foregoing theory we shall use the example of the
classical, massive Klein-Gordon field.

Example The massive Klein-Gordon Lagrangian density is

LKG =
1
2

(∂µφ∂µφ−m2φ2)

=
1
2

[φ̇2 − (5φ)2 −m2φ2]

A) Derive expressions for the covariant momentum density and
the canonical momentum.
B) Derive the equation of motion in position space and momen-
tum space.
C) Derive expressions for the energy-momentum tensor and the
Hamiltonian density.

Solution A) The covariant momentum density is more easily
evaluated by re-writing LKG = 1

2(gµν∂µφ∂νφ − m2φ2). Thus
Πµ = ∂L

∂(∂µφ) = 1
2g
µν(δαµ∂νφ + ∂µφδ

α
ν ) = 1

2(δαµ∂
µφ + ∂νφδαν ) =

1
2(∂αφ+ ∂αφ) = ∂αφ. Thus for the Klein-Gordon field we have

Πα = ∂αφ

giving the canonical momentum Π = Π0 = ∂0φ = ∂0φ = φ̇,

Π = φ̇

B) Evaluating ∂L
∂φ = −m2φ, the Euler-Lagrange equations give

the field equation as ∂µ∂µφ+m2φ or

(22 +m2)φ = 0
φ̈−52φ+m2φ = 0

which is the Klein-Gordon equation for a free, massive scalar
field. In momentum space p2 = −22, thus

(p2 −m2)φ = 0
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(Note that some authors [Muirhead] define 22 ≡ 52 − ∂2

∂t2
dif-

ferent from (1.1), so that they write the Klein-Gordon equation
as (22 −m2)φ = 0 or (p2 +m2)φ = 0.)

C) The energy momentum tensor is

Tµν ≡ Πµ∂νφ− gµνL
= ∂µφ∂νφ− gµνL

= ∂µφ∂νφ−
1
2
gµν(∂αφ∂αφ−m2φ2)

Therefore the Hamiltonian density isH ≡ T00 = φ̇2− 1
2(∂αφ∂αφ−

m2φ2) which becomes [Leon]

H =
1
2
φ̇2 +

1
2

(5φ)2 +
1
2
m2φ2

=
1
2

[Π2 + (5φ)2 +m2φ2]

1.5 Noether’s Theorem

Noether’s theorem provides a general and powerful method for discussing
symmetries of the action and Lagrangian and directly relating these sym-
metries to conservation laws.

Many books [Kaku] discuss Noether’s theorem in a piecemeal fashion,
for example by treating internal and spacetime symmetries separately. It
is better to develop the formalism for all types of symmetries and then to
extract out the spacetime and internal symmetries as special cases. The
best discussion of this approach is in [Goldstein, Section 12-7, pg. 588]
and [Greiner FQ, section 2.4, pg. 39]. Another excellent discussion of this
general approach is presented in [Schwabl, section 12.4.2, pg. 268]. However
note that the discussion presented by [Schwabl] concerns itself only with the
symmetries of the Lagrangian, although the general spacetime and internal
symmetries are properly treated together. The discussions by [Goldstein]
and [Greiner] treat the symmetries of both the Lagrangian and the action
as well.

In what follows we rely on the methods presented by [Goldstein].
The theory below closely follows [Greiner FQ 40]. We prefer to use the

notation of [Goldstein] for fields, namely ηr(x) or ηr(xµ) rather than using
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φr(x) or ψr(x) because the latter notations might make us think of scalar
or spinor fields. The notation ηr(x) is completely general and can refer to
scalar, spinor or vector field components.

We wish to consider how the Lagrangian and action change under a
coordinate transformation

xµ → x′µ ≡ xµ + δxµ

Let the corresponding change in the field (total variation) be [Ryder83,
Schwabl263]

η′r(x
′) ≡ ηr(x) + ∆ηr(x)

and the corresponding change in the Lagrangian

L′(x′) ≡ L(x) + ∆L(x)

with
L(x) ≡ L(η(x), ∂µη(x), x)

where ∂µη(x) ≡ ∂η(x)
∂xµ

and 1

L′(x′) ≡ L(η′(x′), ∂µ
′
η′(x′), x′)

(Note: no prime on L on right hand side) where ∂µ
′
η′(x′) ≡ ∂η′(x′)

∂x′µ
Notice that the variations defined above involve two transformations,

namely the change in coordinates from x to x′ and also the change in the
shape of the function from η to η′.

However there are other transformations (such as internal symmetries or
gauge symmetries) that change the shape of the wave function at a single
point. Thus the local variation is defined as (same as before)

η′r(x) ≡ ηr(x) + δηr(x)

1This follows from the assumption of form invariance [Goldstein 589]. In general the
Lagrangian gets changed to

L(ηr(x), ∂νηr(x), x)→ L′(η′r(x′), ∂ν′η′r(x′), x′)

with ∂ν′ ≡ ∂
∂x′ν

The assumption of form invariance [Goldstein 589] says that the Lagrangian has the same
functional form in terms of the transformed quantities as it does in the original quantities,
namely

L′(η′r(x′), ∂ν′η′r(x′), x′) = L(η′r(x
′), ∂ν′η

′
r(x
′), x′)
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The local and total variations are related via

δηr(x) = η′r(x)− ηr(x)
= η′r(x)− η′r(x′) + η′r(x

′)− ηr(x)
= −[η′r(x

′)− η′r(x)] + ∆ηr(x)

Recall the Taylor series expansion

f(x) = f(a) + (x− a)f ′(a) + ...

= f(a) + (x− a)
∂f(x)
∂x

|x=a + ...

or

f(x)− f(a) ≈ (x− a)
∂f

∂a

which gives

η(x′)− η(x) ≈ (x′ − x)
∂η(x′)
∂x′

|x′=x

≡ (x′ − x)
∂η

∂x
= δx

∂η

∂x

Thus

δηr(x) = ∆ηr(x)− ∂η′r
∂xµ

δxµ

To lowest order η′r ≈ ηr. We do this because the second term is second order
involving both ∂η′ and δxµ. Thus finally we have the relation between the
total and local variations as (to first order)

δηr(x) = ∆ηr(x)− ∂ηr
∂xµ

δxµ

Now we ask whether the variations ∆ and δ commute with differentia-
tion. (It turns out δ does commute but ∆ does not.) From the definition
δη(x) ≡ η′(x)− η(x) it is obvious that (see before)

∂

∂xµ
δη(x) = δ

∂η(x)
∂xµ
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showing that δ “commutes” with ∂µ ≡ ∂
∂xµ

. However ∆ does not commute,
but has an additional term, as in (see Problems) [Greiner FQ41]

∂

∂xµ
∆η(x) = ∆

∂η(x)
∂xµ

+
∂η(x)
∂xν

∂δxν

∂xµ

Let us now study invariance of the action [Goldstein 589, Greiner FQ
41]. The assumption of scale invariance [Goldtein 589] says that the action
is invariant under the transformation 2 (i.e. transformation of an ignorable
or cyclic coordinate)

S′ ≡
∫

Ω′
d4x′ L′(η′r(x′µ), ∂ν′η′r(x

′
µ), x′µ)

=
∫

Ω
d4x L(ηr(xµ), ∂νηr(xµ), xµ) ≡ S

Demanding that the action is invariant, we have (in shorthand notation)

δS ≡
∫

Ω′
d4x′ L′(x′)−

∫
Ω
d4xL(x) ≡ 0

Note that this δS is defined differently to the δS that we used in the deriva-
tion of the Euler-Lagrange equations. Using L′(x′) ≡ L(x) + ∆L(x) gives

δS ≡
∫

Ω′
d4x′∆L(x) +

∫
Ω′
d4x′ L(x)−

∫
Ω
d4xL(x) = 0

We transform the volume element with the Jacobian

d4x′ =
∣∣∣∣∂x′ µ∂xν

∣∣∣∣ d4x

using x′ µ = xµ + δxµ which gives [Greiner FQ 41]

2Combining both form invariance and scale invariance gives [Goldstein 589]

δS ≡ S′ − S =

∫
Ω′
d4x′ L(η′r(x

′), ∂ν′η
′
r(x
′), x′)−

∫
Ω

d4xL(ηr(x), ∂νηr(x), x) = 0

In the first integral x′ is just a dummy variable so that∫
Ω′
d4x L(η′r(x), ∂νη

′
r(x), x)−

∫
Ω
d4x L(ηr(x), ∂νηr(x), x) = 0

which [Goldstein] uses to derive current conservation.
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d4x′ =
∣∣∣∣∂x′ µ∂xν

∣∣∣∣ d4x =

∣∣∣∣∣∣∣∣∣
1 + ∂δx0

∂x0
∂δx0

∂x1 . . .

∂δx1

∂x0 1 + ∂δx1

∂x1

...
... . . . 1 + ∂δx3

∂x3

∣∣∣∣∣∣∣∣∣ d
4x

= (1 +
∂δxµ

∂xµ
)d4x

to first order only. Thus the variation in the action becomes

δS =
∫

Ω
(1 +

∂δxµ

∂xµ
)d4x ∆L(x) +

∫
Ω

(1 +
∂δxµ

∂xµ
)d4x L(x)−

∫
Ω
d4x L(x)

=
∫

Ω
d4x ∆L(x) +

∫
Ω
d4x L(x)

∂δxµ

∂xµ

to first order. The second order term ∂δxµ

∂xµ ∆L(x) has been discarded. Using
the relation between local and total variations gives

δS =
∫

Ω
d4x (δL(x) +

∂L
∂xµ

δxµ) +
∫

Ω
d4x L(x)

∂δxµ

∂xµ

=
∫

Ω
d4x {δL(x) +

∂

∂xµ
[L(x)δxµ]}

Recall that L(x) ≡ L(ηr(x), ∂µηr(x)). Now express the local variation δL in
terms of total variations of the field as

δL =
∂L
∂ηr

δηr +
∂L

∂(∂µηr)
δ(∂µηr)

= ” +
∂L

∂(∂µηr)
∂µ δηr

because δ “commutes” with ∂µ ≡ ∂
∂xµ

. Now add zero,

δL =
∂L
∂ηr

δηr −
[
∂µ

∂L
∂(∂µηr)

]
δηr +

[
∂µ

∂L
∂(∂µηr)

]
δηr +

∂L
∂(∂µηr)

∂µδηr

=
[
∂L
∂ηr
− ∂µ ∂L

∂(∂µηr)

]
δηr + ∂µ

[
∂L

∂(∂µηr)
δηr

]
Note: the summation convention is being used for both µ and r. This ex-
pression for δL is substituted back into δS = 0, but because the region of
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integration is abritrary, the integrand itself has to vanish. Thus the inte-
grand is [

∂L
∂ηr
− ∂µ ∂L

∂(∂µηr)

]
δηr + ∂µ

[
∂L

∂(∂µηr)
δηr + Lδxµ

]
= 0

The first term is just the Euler-Lagrage equation which vanishes. For ηr
use the relation between local and total variations, so that the second term
becomes

∂µ
[

∂L
∂(∂µηr)

(
∆ηr −

∂ηr
∂xν

δxν

)
+ Lδxµ

]
= 0

which is the continuity equation

∂µ jµ = 0

with [Schwabl 270]

jµ ≡
∂L

∂(∂µηr)
∆ηr −

[
∂L

∂(∂µηr)
∂νηr − gµνL

]
δxν

≡ ∂L
∂(∂µηr)

∆ηr − Tµνδxν

with the energy-momentum tensor defined as [Scwabl 270]

Tµν ≡
∂L

∂(∂µηr)
∂νηr − gµνL

The corresponding conserved charge is (See Problems)

Q ≡
∫
d3x j0(x)

such that
dQ

dt
= 0

Thus we have j0(x) is just the charge density

j0(x) ≡ ρ(x)

This leads us to the statement,

Noether’s Theorem: Each continuous symmetry transformation
that leaves the Lagrangian invariant is associated with a con-
served current. The spatial integral over this current’s zero com-
ponent yields a conserved charge. [Mosel 16]
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1.6 Spacetime Symmetries

The symmetries we will consider are spacetime symmetries and internal sym-
metries. Super symmetries relate both of these. The simplest spacetime
symmetry is 4-dimensional translation invariance, involving space transla-
tion and time translation.

1.6.1 Invariance under Translation

[GreinerFQ 43] Consider translation by a constant factor εµ,

x′µ = xµ + εµ

and comparing with x′µ = xµ + δxµ gives δxµ = εµ. The shape of the field
does not change, so that ∆ηr = 0 (which is properly justified in Schwabl
270) giving the current as

jµ = −
(

∂L
∂(∂µηr)

∂ηr
∂xν
− gµνL

)
εν

with ∂µjµ = 0. Dropping off the constant factor εν lets us write down a
modified current (called the energy-momentum tensor)

Tµν ≡
∂L

∂(∂µηr)
∂νηr − gµνL

with
∂µTµν = 0

In general jµ has a conserved charge Q ≡
∫
d3x jo(x). Thus Tµν will have

4 conserved charges corresponding to T00, T01, T02, T03 which are just
the energy E and momentum ~P of the field. In 4-dimensional notation
[GreinerFQ 43]

P ν = (E, ~P ) =
∫
d3x T 0ν = constant.

with
dP ν

dt
= 0

The above expression for Tµν is the same result we obtained before where
we wrote

Tµν = πµ∂νφ− gµνL (1.4)

with
πµ =

∂L
∂(∂µφ)

(1.5)
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1.6.2 Angular Momentum and Lorentz Transformations

NNN: below is old Kaku notes. Need to revise; Schwabl and Greiner are
best (they do J=L+S)

Instead of a simple translation δxi = ai now consider a rotation δxi =
aijxj . Lorentz transformations are a generalisation of this rotation, namely
δxµ = εµνx

ν . Before for spacetime translations we had δxµ = aµ and
therefore δφ = ∂φ

∂xµ
δxµ = δxµ∂µφ = aµ∂µφ. Copying this, the Lorentz

transformation is

δxµ = εµνx
ν

δφ = εµνx
ν∂µφ

δ∂ρφ = εµνx
ν∂µ∂ρφ

Now repeat same step as before, and we get the conserved current

Mρµν = T ρνxµ − T ρµxν

with
∂ρ Mρµν = 0

and the conserved charge

Mµν =
∫
d3x M0µν

with
d

dt
Mµν = 0

For rotations in 3-d space, the d
dtM

ij = 0 corresponds to conservation of
angular momentum.
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1.7 Internal Symmetries

[Guidry 91-92]
One of the important theorems in Lie groups is the following :

Theorem: Compact Lie groups can always be represented by
finite-dimensional unitary operators. [Tung p.173,190]

Thus using the notation U(α1, α2, ...αN ) for an element of an N-parameter
Lie group (αi are the group parameters), we can write any group element as

U(α1, α2, ...αN ) = eiαiXi

≈ 1 + iεiXi + ...

where the latter approximation is for infinitessimal group elements αi = εi.
The Xi are linearly independent Hermitian operators (there are N of them)
which satisfy the Lie algebra

[Xi, Xj ] = i fijkXk

where fijk are the structure constants of the group.
These group elements act on wave functions, as in [Schwabl 272]

η(x)→ η′(x) = eiαiXiη(x)
≈ (1 + iεiXi)η(x)

giving
δη(x) = η′(x)− η(x) = iεiXiη(x)

Consider the Dirac equation (i /∂ −m)ψ = 0 with 4-current, jµ = ψ̄γµψ.
This is derived from the Lagrangian L = ψ̄(i /∂ − m)ψ where ψ̄ ≡ ψ†γ0.
Now, for αi = constant, the Dirac Lagrangian L is invariant under the
transformation ψ → ψ′ = eiαiXiψ. This is the significance of group theory
in quantum mechanics. Noether’s theorem now tells us tht we can find a
corresponding conserved charge and conserved current.

The Noether current, with δxν = 0 and therefore δη(x) = ∆η(x) [Schw-
abl 272], is

jµ =
∂L

∂(∂µηr)
δηr

=
∂L

∂(∂µηr)
iεi Xi ηr
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and again dropping off the constant factor εi define a new curent (and throw
in a minus sign so that we get a positive current in the example below)

jµi = − ∂L
∂(∂µηr)

i Xi ηr

which obeys a continuity equation

∂µ j
µ
i = 0

Example Calculate jµi for the isospin transformation eiαiXi for the Dirac
Lagrangian L = ψ̄(i /∂ −m)ψ ≡ ψ̄(iγµ∂µ −m)ψ

Solution

jµi = − ∂L
∂(∂µψ)

iXiψ

and
∂L

∂(∂µψ)
= ψ̄ i γµ

giving
jµi = −iψ̄γµ iXiψ

or
jµi = ψ̄γµXiψ

where Xi is the group generator. (Compare this to the ordinary Dirac
probabilty current jµ = (ρ,~j ) = ψ̄γµψ).
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From the previous example we can readily display conservation of charge.
Write the U(1) group elements as

U(θ) = eiθq

where the charge q is the generator. Thus the conserved current is

jµ = qψ̄γµψ

where Jµ = (ρ,~j ) = ψ̄γµψ is just the probability current for the Dirac
equation. The conserved charge is [Mosel 17,34]

Q =
∫
d3x j0 = q

∫
d3x ψ̄ γ0 ψ

= q

∫
d3x ρ

(Note that ρ = ψ̄γ0ψ = ψ†γ0γ0ψ = ψ†ψ = Σ4
i=1|ψi|2 where ψi is each

component of ψ. Thus ρ is positive definite.)
See also [Mosel 17,34; BjRQM 9]. Note that if ψ is normalized so that

[Strange 123] ∫
d3x ρ =

∫
d3xψ†ψ = 1

then we have Q = q as required. This is explained very clearly in [Gross
122-124]. However often different normalizations are used for the Dirac
wave functions [Muirhead 72, Halzen & Martin 110]. For example [Halzen
& Martin 110] have∫

d3x ρ =
∫
d3xψ†ψ = u†u = 2E

See also [Griffiths 223].
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1.8 Summary

1.8.1 Covariant and contravariant vectors

Contravariant and covariant vectors and operators are

Aµ = (Ao, ~A) Aµ = (Ao,− ~A)

and

∂µ = ( ∂∂t , ~5) ∂µ = ( ∂∂t ,−~5)

1.8.2 Classical point particle mechanics

The point particle canonical momentum is

pi =
∂L

∂q̇i

and the EL equations are

d

dt
(
∂L

∂q̇i
)− ∂L

∂qi
= 0

The point particle Hamiltonian is

H(pi, qi) ≡ piq̇i − L(qi, q̇i) (1.6)

giving Hamilton’s equations

∂H

∂pi
= q̇i − ∂H

∂qi
= ṗi

1.8.3 Classical field theory

For classical fields φi, the EL equations are

∂µ
∂L

∂(∂µφi)
− ∂L

∂φi
= 0

The covariant momentum density is

Πµ ≡ ∂L
∂(∂µφ)

and the canonical momentum is

Π ≡ Π0 =
∂L
∂φ̇
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The energy momentum tensor is (analagous to point particle Hamiltonian)

Tµν ≡ Πµ∂νφ− gµνL

with the Hamiltonian density

H ≡ T00 = Πφ̇− L

1.8.4 Noether’s theorem

The conserved (∂µjµ = 0) Noether current is

jµ ≡
∂L

∂(∂µηr)
∆ηr − Tµνδxν

with

Tµν ≡
∂L

∂(∂µηr)
∂νηr − gµνL

The conserved (dQdt = 0) charge is

Q ≡
∫
d3x j0(x)

which is just the charge density,

j0(x) ≡ ρ(x)

If we consider the spacetime symmetry involving invariance under transla-
tion then we can derive Tµν from jµ. The result for Tµν agrees with that
given above. For the Klein-Gordon Lagrangian this becomes

Tµν = ∂µφ∂νφ− gµνL (1.7)

The momentum is (with E ≡ H)

P ν = (H, ~P ) =
∫
d3x T 0ν = constant (1.8)

where dP ν

dt = 0.
For internal symmetries the group elements can be written

U(α1, α2, ...αN ) = eiαiXi ≈ 1 + iεiXi + ...
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where
[Xi, Xj ] = i fijkXk

The group elements act on wave functions

η → η′ = eiαiXiη ≈ (1 + iεiXi)η

giving
δη = η′ − η = iεiXiη

The Noether current, for an internal symmetry (δxν = 0 and therefore
δη = ∆η) becomes

jµi = − ∂L
∂(∂µηr)

i Xi ηr

For the Dirac Lagrangian, invariant under eiαiXi , with αi = constant,
this becomes

jµi = ψ̄γµXiψ
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1.9 References and Notes

General references for units (Section 1.1) are [Aitchison and Hey, pg.
526-531; Halzen and Martin, pg. 12-13; Guidry, pg.511-514; Mandl
and Shaw, pg. 96-97; Griffiths, pg. 345; Jackson, pg. 811-821; Misner,
Thorne and Wheeler, pg. 35-36]. References for Natural units (Section
1.1.1) are [Guidry, pg. 511-514; Mandl and Shaw, pg. 96-97; Griffiths, pg.
345; Aitchison and Hey, pg. 526-531; Halzen and Martin, pg. 12-13] and
references for Geometrical units (Section 1.1.2) are [Guidry, pg. 514; MTW,
pg. 35-36].

For a complete introduction to covariant and contravariant vectors see
[Jackson]

The most commonly used metric is

ηµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


This metric is used throughout the present book and is also used by the
following authors: [Greiner, Aitchison & Hey, Kaku, Peskin & Schroeder,
Ryder, Bjorken and Drell, Mandl & Shaw, Itzykson & Zuber, Sterman,
Chang, Guidry, Griffiths, Halzen & Martin and Gross].

Another less commonly used metric is

ηµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


This metric is not used in the present book, but it is used by [Weinberg and
Muirhead].

The best references for the classical field ELE and Noether’s theorem
are [Schwabl, Ryder]



Chapter 2

Symmetries & Group theory

2.1 Elements of Group Theory

SUSY nontrivially combines both spacetime and internal symmetries.

2.2 SO(2)

In SO(2) the invariant is x2 + y2. We write(
x′

y′

)
=

(
cos θ sin θ
sin θ cosθ

)(
x
y

)

or

xi
′

= Oijxj

For small angles this is reduced to

δx = θy and δy = −θx

or

δxi = θεijxj

where εij is antisymmetric and ε12 = −ε21 = 1

Read Kaku p. 36-38

33
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2.2.1 Transformation Properties of Fields

References: [Kaku 38; Greiner FQ 95, 96; Elbaz 192; Ho-Kim 28; Mosel 21]

Consider a transformation U which transforms a quantum state [Elbaz
l92] ∣∣α′ >≡ U ∣∣α >

< α′ |=< α|U †

To conserve the norm, we impose

< α′
∣∣β′ >=< α

∣∣β >
which means that U is unitary, i.e. UU † = 1 implying U † = U−1.

Now consider transformation of an operator O, with expectation value

< O >≡< α|O|α >=< α′|O′|α′ >

This gives
< O >=< α|O|α >=< α|U †O′U |α >

giving the transformation rule for the operator as

O = U †O′U

or
O′ = UOU †

To summarize, if a quantum state transforms as [Elbaz 192]

ψ′ = Uψ

or
|α′ >= U |α >

then an operator transforms as

O′ = UOU †

Fields can be grouped into different categories [Mosel 21] according to their
behavior under general Lorentz transformations, which include spatial rota-
tion, Lorentz boost transformations and also the discrete transformations of
space reflection, time reversal and space-time reflection. The general Lorentz
transformation is written [Mosel 21, Kaku 50]

x′µ = Λµνxν (2.1)
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but let’s write it more generally (in case we consider other transformations)

x′µ = aµνx
ν (2.2)

Λµν or aµν for rotation, boost, space inversion is very nicely discussed in
[Ho-Kim 19-22]. A scalar field transforms under (2.1) or (2.2) as

φ′(x′) = φ(x)

[Mosel 21; Ho-Kim 26; Greiner 95, 96]. Now if φ(x) is an operator then its
transformation is also written as [Greiner 96, Kaku 38]

φ′(x′) = Uφ(x′)U †

Thus a scalar field transforms under (2.2) as

φ′(x′) = Uφ(x′)U † = φ(x)

A vector field transforms as [Ho-Kim 30; Kaku 39]

φ′µ(x′) = aνµφν(x) ≡ Uφµ(x′)U †

i.e. it just transforms in the same way as an ordinary 4-vector.

2.3 Representations of SO(2) and U(1)

Read Kaku 39-42, 741-748

SO(2) can be defined as the set of transformations that leave x2 + y2 invari-
ant. There is a homomorphism between SO(2) and U(1). A U(1) transfor-
mation can be written ψ′ = eiθψ = Uψ. This will leave the inner product
ψ∗φ invariant. Thus the group U(1) can be defined as the set of transfor-
mations that leave ψ∗φ invariant [Kaku 742, Peskin 496]

2.4 Representations of SO(3) and SU(1)

SO(3) leaves x2 + x2 + z2 invariant.

Read Kaku 42-45.
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2.5 Representations of SO(N)

Students should read rest of chapter in Kaku.

NNN NOW do a.m.



Chapter 3

Free Klein-Gordon Field

NNN write general introduction

3.1 Klein-Gordon Equation

Relativistic Quantum Mechanics (RQM) is the subject of studying relativis-
tic wave equations to replace the non-relativistic Schrodinger equation. The
two prime relativistic wave equations are the Klein-Gordon equation (KGE)
and the Dirac equation. (However these are only valid for 1-particle prob-
lems whereas the Schrodinger equation can be written for many particles.)

Our quantum wave equation (both relativistic and non-relativistic) is
written

Ĥψ = Êψ

with
Ĥ ≡ T̂ + Û

and
Ê = ih̄

∂

∂t

Non-relativistically we have T̂ = p̂2

2m with p̂ = −ih̄~∇ giving(
− h̄2

2m
∇2 + U

)
ψ = ih̄

∂

∂t
ψ

The time-independent Schrodinger equation simply has Eb instead of Ê
where Eb is the binding energy, i.e.(

− h̄2

2m
∇2 + U

)
ψ = Ebψ

37
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However in special relativity we have (with c = 1)

E = T +m

and
E2 = p2 +m2

giving

T =
√
p2 +m2 −m

With the replacement ~p→ −ih̄~∇, the relativistic version of the free particle
(U = 0) Schrodinger equation would be (T̂ψ = Ebψ)(√

−h̄2∇2 +m2 −m
)
ψ = Ebψ

In the non-relativistic case E = Eb, but relativistically E = Eb +m, giving√
−h̄2∇2 +m2 ψ = Eψ

which is called the Spinless Salpeter equation. There are two problems with
this equation; firstly the operator

√
−h̄2∇2 +m2 is non-local [Landau 221]

making it very difficult to work with in coordinate space (but actually it’s
easy in momentum space) and secondly the equation is not manifestly co-
variant [Gross, pg. 92]. Squaring the Spinless Salpeter operator gives the
Klein-Gordon equation (KGE)

(−h̄2∇2 +m2)φ = E2φ

= −h̄2 ∂
2

∂t2
φ

or (with h̄ = c = 1, see Halzen & Martin, pg. 12, 13; Aitchison & Hey, pg.
526-528)

φ̈−∇2φ+m2φ = 0

Recall the wave equation (with y′′ ≡ ∂2y/∂x2, ÿ ≡ ∂2y/∂t2)

y′′ − 1
c2
ÿ = 0

where c is the wave velocity. Thus the KGE (c 6= 1) is (with ∇2 = ∂2/∂x2)

φ′′ − 1
c2
φ̈ = m2φ
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which is like a massive (inhomogeneous) wave equation. The KGE is written
in manifestly covariant form as

(22 +m2)φ = 0

which in momentum space is (using p2 → −22)

(p2 −m2)φ = 0

A quick route to the KGE is with the relativistic formula p2 ≡ pµpµ = m2

(6= ~p2) giving p2 − m2 = 0 and (p2 − m2)φ = 0 and p2 → −22 giving
(22+m2)φ = 0. The KGE can be written in terms of 4-vectors, (p2−m2)φ =
0 and is therefore manifestly covariant. Finally, note that the KGE is a 1-
particle equation!

(Note that some authors [Muirhead] use gµν =


−1

1
1

1

 and

so have 22 ≡ ∇2 − ∂2

∂t2
and (22 − m2)φ = 0 or (p2 + m2)φ = 0 for the

Klein-Gordon equation.)

3.2 Probability and Current

The Klein-Gordon equation was historically rejected because it predicted a
negative probability density. In order to see this let’s first review probability
and current for the Schrodinger equation. Then the KG example will be
easier to understand.

3.2.1 Schrodinger equation

The free particle Schrodinger equation (SE) is

− h̄2

2m
∇2ψ = ih̄

∂ψ

∂t

The complex conjugate equation is (SE∗)

− h̄2

2m
∇2ψ∗ = −ih̄∂ψ

∗

∂t

Multiply SE by ψ∗ and SE∗ by ψ

− h̄2

2m
ψ∗∇2ψ = ih̄ ψ∗

∂ψ

∂t
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− h̄2

2m
ψ∇2ψ∗ = −ih̄ ψ∂ψ

∗

∂t

and subtract these equations to give

− h̄2

2m
(ψ∗∇2ψ − ψ∇2ψ∗) = ih̄

(
ψ∗
∂ψ

∂t
+ ψ

∂ψ∗

∂t

)
= ih̄

∂

∂t
(ψ∗ψ)

= − h̄2

2m
~∇ · [ψ∗~∇ψ − (~∇ψ∗)ψ]

or
∂

∂t
(ψ∗ψ) +

h̄

2mi
~∇ · [ψ∗~∇ψ − (~∇ψ∗)ψ] = 0

which is just the continuity equation ∂ρ
∂t + ~∇ ·~j = 0 if

ρ ≡ ψ∗ψ

~j ≡ h̄

2mi
[ψ∗~∇ψ − (~∇ψ∗)ψ]

which are the probability density and current for the Schrodinger equation.

3.2.2 Klein-Gordon Equation

The free particle KGE is (22 +m2)φ = 0 or (using 22 = ∂2

∂t2
−∇2)

∂2φ

∂t2
−∇2φ+m2φ = 0

and the complex conjugate equaiton is (KGE∗)

∂2φ∗

∂t2
−∇2φ∗ +m2φ∗ = 0

Multiplying KGE by φ∗ and KGE∗ by φ gives

φ∗
∂2φ

∂t2
− φ∗∇2φ+m2φ∗φ = 0

φ
∂2φ∗

∂t2
− φ∇2φ∗ +m2φφ∗ = 0

and subtract these equations to give

φ∗
∂2φ

∂t2
− φ∂

2φ∗

∂t2
− φ∗∇2φ+ φ∇2φ∗ = 0
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=
∂

∂t

(
φ∗
∂φ

∂t
− φ∂φ

∗

∂t

)
− ~∇ ·

[
φ∗~∇φ− φ~∇φ∗

]
which is the continuity equation ∂ρ/∂t+ ~∇ ·~j = 0 if

ρ ≡ φ∗∂φ
∂t
− φ∂φ

∗

∂t

~j ≡ φ~∇φ∗ − φ∗~∇φ
or jµ = φ∗∂µφ− φ∂µφ∗

but to get this to match the SE wave function we should define ~j in the
same way, i.e.

~j ≡ h̄

2mi

[
φ∗~∇φ− φ~∇φ∗

]
=
−ih̄
2m

(
φ∗~∇φ− φ~∇φ∗

)
which is −h̄2mi times ~j above. Thus for ∂ρ

∂t + ~∇ ·~j = 0 to hold we must have

ρ ≡ ih̄

2m

(
φ∗
∂φ

∂t
− φ∂φ

∗

∂t

)

The problem with ρ (in both expressions above) is that it is not positive
definite and therefore cannot be interpreted as a probability density. This
is one reason why the KGE was discarded. (Note: because ρ can be either
positive or negative it can be interpreted as a charge density. See [Landau,
pg. 227]

Notice how this problematic ρ comes about because the KGE is 2nd order
in time. We have ∂ρ

∂t and ρ itself constains ∂
∂t ; this does not happen with

the SE or DE.
By the wave, note that we can form a 4-vector KG current

jµ =
ih̄

2m
(φ∗∂µφ− φ∂µφ∗)

3.3 Classical Field Theory

Reference: [Schwabl, Chapter 13; Kaku, Chapter 3]
Some of the key results for the free and real Klein-Gordon field were

worked out in an Example in Chapter 1. Let’s remind outselves of these
results.
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The massive Klein-Gordon Lagrangian was

LKG =
1
2

(∂µφ∂µφ−m2φ2)

which gave the equation of motion in position and momentum space as

(22 +m2)φ = 0
(p2 −m2)φ = 0

The covariant momentum density was

Πµ = ∂µφ

giving the canonical momentum

Π ≡ Πo = φ̇(x)

The Hamiltonian density was (with H ≡
∫
d3xH)

H =
1
2

[Π2 + (~∇φ)2 +m2φ2]

Finally, the momentum operator of the Klein-Gordon field is (see Problems)

~P = −
∫
d3x φ̇(x)~∇φ(x)

3.4 Fourier Expansion & Momentum Space

[See Greiner FQ 76 , Jose and Saletin 589]
As with the non-relativistic case we expand plane wave states as

φ(~x, t) =
∫
dk̃ a(~k, t)ei~k·~x

but now with
dk̃ = Nkd

3k

where Nk is a normalization constant, to be determined later.
Substitute φ(~r, t) into the KGE(

22 +m2
)
φ = 0(

∂2
t −∇2 +m2

)
φ = 0
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giving ∫
dk̃
(
ä+ k2a+m2a

)
ei
~k·~x = 0

Defining

ω ≡ ω(~k) =
√
k2 +m2

and requiring the integrand to be zero gives

ä+ ω2a = 0

which is a 2nd order differential equation, with Auxilliary equation

r2 + ω2 = 0

or
r = ±− iω

The two solutions ± are crucial ! They can be interpreted as positive and
negative energy, or as particle and antiparticle. In the non-relativistic (NR)
case we only got one solution. Thus [Teller, pg. 67]

a(~k, t) = c(~k)eiωt + a(~k)e−iωt

giving our original expansion as

φ(~x, t) =
∫
dk̃
[
a(~k)ei(~k·~x−ωt) + c(~k)ei(~k·~x+ωt)

]
(Remember that ω ≡ ω(~k) =

√
k2 +m2) Now the Schrodinger wave function

ψ(~x, t) is complex but the KG wave function φ(~x, t) is real. (The Schrodinger
equation has an i in it, but the KGE does not.) Thus [Greiner, pg. 77]

φ(~x, t) = φ∗(~x, t) = φ†(~x, t)

giving ∫
dk̃
[
a(~k)ei(~k·~x−ωt) + c(~k)ei(~k·~x+ωt)

]
=
∫
dk̃
[
a†(~k)e−i(~k·~x−ωt) + c†(~k)e−i(~k·~x+ωt)

]
Re-write this as ∫

dk̃
[
a(~k)ei(~k·~x−ωt) + c(−~k)e−i(~k·~x−ωt)

]
=
∫
dk̃
[
a†(~k)e−i(~k·~x−ωt) + c†(−~k)ei(~k·~x−ωt)

]
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where we have made the substitution ~k → −~k in two terms.
(This does not mean k → −k; it cannot. k is the magnitude of ~k. We

are simply reversing the direction (magnitude) of ~k. This does not affect the
volume element d3k.)

Obviously then
c(−~k) = a†(~k)

c†(−~k) = a(~k)

Re-writing our expansion as

φ(~x, t) =
∫
dk̃
[
a(~k)ei(~k·~x−ωt) + c(−~k)e−i(~k·~x−ωt)

]
gives [same conventions as Kaku 152, Mandl and Shaw 44, Schwabl 278]

φ(~x, t) ≡ φ+(x) + φ−(x)

=
∫
dk̃
[
a(~k)ei(~k·~x−ωt) + a†(~k)e−i(~k·~x−ωt)

]

=
∫
dk̃
[
a(~k)e−ik·x + a†(~k)eik·x

]

=
∑
~k

1√
2ωV

[
a~ke
−ik·x + a†~ke

ik·x
]

(3.1)

[see Greiner FQ 79 for box vs. continuum normalization] where k · x ≡
kµxµ = koxo − ~k · ~x = ωt− ~k · ~x.

The conjugate momentum is

Π(~x, t) = φ̇(~x, t) = −i
∫
dk̃ ω

[
a(~k)ei(~k·~x−ωt) − a†(~k)e−i(~k·~x−ωt)

]

= −i
∫
dk̃ ω

[
a(~k)e−ik·x − a†(~k)eik·x

]
≡ Π+(x) + Π−(x)

(3.2)

Note that we are still studying classical field theory when we Fourier expand
these classical fields [Goldstein 568, Jose & Saletan 588].
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3.5 Klein-Gordon QFT

Recall the commutation relations from non-relativistic quantum mechanics,
namely

[x, p] = ih̄

and
[a, a†] = 1

To develop the QFT we impose similar relations, but this time for fields.
The equal time commutation relations

[φ(~x, t),Π(~x′, t)] = iδ(~x− ~x′) (3.3)

and
[φ(~x, t), φ(~x′, t)] = [Π(~x, t),Π(~x′, t)] = 0 (3.4)

where we had

Π = φ̇

We now need to find the commutation relations for a(~k) and a†(~k). We
expect the usual results

[a(~k), a†(~k′)] = δ(~k − ~k′) (3.5)

and
[a(~k), a(~k′)] = [a†(~k), a†(~k′)] = 0 (3.6)

3.5.1 Indirect Derivation of a, a† Commutators

[Greiner, pg. 77]
To check whether our expection above is correct evaluate

[φ(~x, t),Π(~x′, t)]
= [φ+(~x, t) + φ−(~x, t),Π+(~x′, t) + Π−(~x′, t)]
= [φ+(~x, t),Π+(~x′, t)] + [φ+(~x, t),Π−(~x′, t)]

+[φ−(~x, t),Π+(~x′, t)] + [φ−(~x, t),Π−(~x′, t)]

= −i
∫
dk̃

∫
dk̃′ ω′

{
[a(~k), a(~k′)]e−i(k·x+k′·x′) − [a(~k), a†(~k′)]e−i(k·x−k

′·x′)

+ [a†(~k), a(~k′)]ei(k·x−k
′·x′) − [a†(~k), a†(~k′)]ei(k·x+k′·x′)]

}
where k · x = ωt− ~k · ~x and t′ ≡ t and ω′ ≡ ω(~k′) =

√
~k′ 2 +m2.
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Inserting (3.5) and (3.6) gives

[φ(~x, t),Π(~x′, t)] = −i
∫
dk̃

∫
dk̃′ ω′

[
−δ(~k − ~k′)e−i(k·x−k′·x′)

−δ(~k′ − ~k)ei(k·x−k
′·x′)

]
= i

∫
d3k N2

k ω
[
ei
~k·(~x−~x′) + e−i

~k·(~x−~x′)
]

Now if [Greiner, pg. 77]

Nk =
1√

2ω(2π)3

then we obtain

[φ(~x, t),Π(~x′, t)] = i

∫
d3k

1
2ω(2π)3

ω
[
ei
~k·(~x−~x′) + e−i

~k·(~x−~x′)
]

= iδ(~x− ~x′)

as required. Here we have used the result,

1
(2π)3

∫
d3k e±i

~k·(~x−~x′) = δ(~x− ~x′)

With the above normalization we have

dk̃ ≡ d3k√
2ω(2π)3

(which is different to IZ114, but same as Kaku). Using the result [IZ114,
Kaku 64-65]

d3k

2ω
= d4k δ(k2 −m2) θ(k0)

gives

dk̃ =

√
2ω

(2π)3
d4kδ(k2 −m2) θ(ko)

(which is different from IZ 114, but same as Kaku)

Note: Some authors [IZ114] use the normalization Nk = 1
(2π)32ω

in which

case [a(~k), a†(~k′)] = (2π)32ωkδ3(~k − ~k′) [Greiner, pg. 77, footnote].
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3.5.2 Direct Derivation of a, a† Commutators

The best way to obtain the commutators directly is to invert the Fourier
expansions to obtain a and a† in terms of φ and Π. The commutators are
then derived directly.

Inverting (3.1) and (3.2) gives [see Problems]

⇒

a~k =
1√

2ω(2π)3

∫
d3x eik·x[ωφ(x) + iΠ(x)]

a†~k =
1√

2ω(2π)3

∫
d3x e−ik·x[ωφ†(x)− iΠ†(x)]

where a~k ≡ a(~k) and φ(x) ≡ φ(~x, t) and k · x ≡ ωt − ~k · ~x and by direct
evaluation of the commutators we arrive at (3.5) and (3.6) [do Problem 5.7]

But remember for KGE φ is real and therefore φ = φ† and Π = Π† giving

a†~k =
1√

2ω(2π)3

∫
d3x e−ik·x[ωφ(x)− iΠ(x)]

3.5.3 Klein-Gordon QFT Hamiltonian

The 2nd quantized field Hamiltonian is (see Problems)

H =
∫
d3k

ω

2
(a†~k a~k + a~k a

†
~k
)

and using the commutator

[ a~k , a
†
~k′

] = δ(~k − ~k′)

gives

H =
∫
d3k

(
N~k +

1
2

)
ω

or
∑
~k

(
N~k +

1
2

)
ω

with
N~k ≡ a

†
~k
a~k

(see Problems)
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We can also calculate the momentum ~P as [Kaku 66, 67; Schwabl 279]

~P =
∫
d3k

(
N~k +

1
2

)
~k

or
∑
~k

(
N~k +

1
2

)
~k

3.5.4 Normal order

References [Kaku68, Mosel 27, Schwabl 280]
The previously derived Hamiltonian is actually infinite! This is beacuse the
term ∫

d3k
1
2
ω =

1
2

∫
d3k

√
~k 2 +m2 =∞

This is one of the first (of many) places where QFT gives infinite answers.
Now because only energy differences are observable, we are free to simply
throw away the infinite piece, and re-write the Hamiltonian as

H =
∫
d3k N~k ω.

A formal way to always get rid of these infinite terms (there is also one
in the previous expression for the momentum ~P ), is to introduce the idea of
normal order.

In a normal ordered product all annihilation operators are placed
to the right hand side of all creation operators.

Two colons :: are used to denote a normal ordered product. For example
[Schwabl 280]

: a~k1
a~k2

a†~k3
: = a†~k3

a~k1
a~k2

: a†~ka~k + a~ka
†
~k

: = 2a†~ka~k

In calculating the Hamiltonian (see Problems) we arrived at

H =
∫
d3k(a†~ka~k + a~ka

†
~k
)
ω

2

and using the commutator

[ a~k , a
†
~k′

] = δ(~k − ~k′)
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gave

H =
∫
d3k(a†~ka~k + a†~ka~k + 1)

ω

2

=
∫
d3k(a†~ka~k + 1/2)ω

which is infinite. If we define H to be normal ordered then

: H : =
∫
d3k : (a†~ka~k + a~ka

†
~k
) :

ω

2

=
∫
d3k(a†~ka~k + a†~ka~k)

ω

2

=
∫
d3ka†~ka~kω

which is finite. Note that normal ordering is equivalent to treating the boson
operators as if they had vanishing commutator. [Schwabl 280]. (nnn Are we
back to a classical theory?)
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3.5.5 Wave Function

[Kaku 68-69]
Now that we have expanded the KG field and Hamiltonian in terms of

creation and destruction operators, we need something for them to operate
on. These are just the many-body states introduced earlier [Bergstrom &
Goobar 289]

| · · ·n~ki · · ·n~kj · · ·〉 =
∏
i

|n~ki〉 (3.7)

with
|n~ki〉 =

1√
n~k!

(
a†~k

)n~k |0〉
where the vacuum state is defined via

a~k|0〉 = 0

The physical interpretation [Bergstrom & Goobar 290] is provided by

H| · · ·n~ki · · ·n~kj · · ·〉 =
∑
~k

nk ε(~k)| · · ·n~ki · · ·n~kj · · ·〉

where ε(~k) = h̄ω(~k). Equation (3.7) is interpreted as a many particle state
where n~k1

have momentum ~k1, n~k2
have momentum ~k2 etc.

Thus a 1-particle state is written

|1~k〉 ≡ |~k〉 = a†~k|0〉

or
〈1~k| ≡ 〈~k| = 〈0|a~k

The states are normalized as

〈~k|~k′〉 = δ(~k − ~k′)

giving
〈0|a~ka

†
~k′
|0〉 = δ(~k − ~k′).
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3.6 Propagator Theory

[Halzen and Martin 145-150, Kaku, Bj RQM Chapter 6]
The Klein-Gordon equation for a free particle is

(22 +m2)φ = 0

or with the replacement 22 → −p2 in momentum space

(p2 −m2)φ = 0

Let’s write the non-free KGE as

(22 +m2)φ = J(x)

where J(x) is referred to as a source term. This is solved with the Green
function method by defining a propagator ∆F (x− y) as

(22 +m2)∆F (x− y) ≡ −δ4(x− y)

so that the solution is

φ(x) = φ0(x)−
∫
d4y∆F (x− y)J(y)

where φ0(x) is the solution with J = 0. (see Problems) Define the Fourier
transform

∆F (x− y) ≡
∫

d4k

(2π)4
e−ik·(x−y)∆F (k)

Our usual method of solution for propagators or Green functions is to solve
for ∆F (k) and then do a contour integral to get ∆F (x − y) rather than
solving for ∆F (x− y) directly. The Problems show that

∆F (k) =
1

k2 −m2
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Example Derive the momentum space Green function for the
Schrodinger equation.

Solution The free particle Schrodinger equation is(
− h̄2

2m
∇2 − ih̄ ∂

∂t

)
ψ = 0

and with the inclusion of a source this is(
− h̄2

2m
∇2 − ih̄ ∂

∂t

)
ψ = J(x) ≡ −U(~x)ψ(~x, t)

or (
+
h̄2

2m
∇2 + ih̄

∂

∂t

)
ψ = −J(x) = U(~x)ψ(x)

Define the Green function(
h̄2

2m
∇2 + ih̄

∂

∂t

)
G0(x− x′) = δ4(x− x′)

and define the Fourier transform

G0(x− x′) =
∫

d4p

(2π)4
e−ip·(x−x

′)G0(p)

Now operate on this to give, and using pµ ≡ (ω, ~p), with h̄ = 1(
h̄2

2m
∇2 + ih̄

∂

∂t

)
G0(x− x′) =

∫
d4p

(2π)4

[
1

2m
(−i~p)2 + i(−iω)] e−ip·(x−x

′)G0(p)

= δ4(x− x′) =
∫

d4p

(2π)4

[
− ~p

2

2m
+ ω

]
e−ip·(x−x

′)G0(p)

but recall that

δ4(x− y) =
∫

d4k

(2π)4
e−ik·(x−y)

which implies

G0(p) =
1

ω − ~p 2/2m
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Example Derive the position space Green function leaving the
pole on the Real axis.

Solution Substituting for G0(p) into G0(x−x′) we need to eval-
uate (h̄ = 1)

G0(x− x′) =
∫

d4p

(2π)4

1
ω − ~p 2/2m

e−ip·(x−x
′)

=
∫

d3p

(2π)3
ei~p·(~x−~x

′)
∫ ∞
−∞

dω

2π
e−iω(t−t′)

ω − ~p 2/2m

and we see that the integrand is singular at ω = ~p 2/2m. This
simple pole is shown in the figure. We need to decide whether to
integrate in the upper half plane (UHP) or the lower half plane
(LHP). This is dictated by the boundary conditions as follows.
Write ω ≡ Re ω + i Im ω, so that

e−iω(t−t′) = eiReω(t−t′)e+ Imω(t−t′)

For t − t′ > 0, the term eImω(t−t′) will blow up for Im ω > 0
but will go to zero for Im ω < 0. Thus the boundary condition
t−t′ > 0 dictates we integrate in the LHP. Similarly for t−t′ < 0
we use the UHP. This is shown in the figure. [See also Halzen
and Martin 148]

X
Re ω

Im ω

t < t'

X
Re ω

Im ω

t > t'

ω=ω0=p2/2m

C1

C

Now apply the Cauchy Residue Theorem, and remember coun-
terclockwise integration is a positive sign. In the left figure the
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coutour does not enclose any poles so that

0 =
∫ ω0−δ

−∞
+
∫
C1

+
∫ ∞
ω0+δ

+
∫
C

and with
∫
C

= 0 (Jordan’s lemma) and lim
δ→0

we have

∫ ∞
−∞

= −
∫
C1

Thus for t > t′

G0(x− x′)t>t′ = −+ πi

∫
d3p

(2π)3
ei~p·(~x−~x

′) 1
2π
e−iω0(t−t′)

= − i
2

∫
d3p

(2π)3
ei~p·(~x−~x

′)e−iω0(t−t′)

with ω0 ≡ ~p 2/2m. Similarly for t < t′ we obtain

G0(x− x′)t<t′ = −− πi
∫

d3p

(2π)3
ei~p·(~x−~x

′) 1
2π
e−iω0(t−t′)

= +
i

2

∫
d3p

(2π)3
ei~p·(~x−~x

′)e−iω0(t−t′)

But this violates causality ! If the wave pulse is sent out at t′ we
do expect a signal at a later time t > t′ but certainly not at an
earlier time t < t′.

Because of the singularity, the integral is not well defined until we specify
the limiting process. Let’s now try a different method for evaluating the
integral that is consistent with the boundary condition, i.e. we want
G0(x− x′)t<t′ = 0.
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Example Evaluate the position space Green function by shifting
the pole off the real axis by a small amount ε, and take lim

ε→0
.

Solution We can shift the pole either above or below the real
axis. We choose to shift it below because then the upper contour
will enclose no poles and will give a zero integral consistent with
our boundary conditions. This is shown in the figure.

C
t>t’

t<t’

X
ω0 - i ε

XX
ω0 - i ε

For t > t′ we have
∞∫
−∞

+
∫
C

= 2πiΣ Residues and with
∫
C

= 0 we

get

G0(x− x′)t>t′ = −2πi
∫

d3p

(2π)3
ei~p·(~x−~x

′)
∫ ∞
−∞

dω

2π
e−iω(t−t′)

ω − ~p 2/2m+ iε

= −i
∫

d3p

(2π)3
ei~p·(~x−~x

′)e−iω0(t−t′)

with lim
ε→0

eε(t−t
′) = 0, which is exactly double our previous answer.

For t < t′ we get
G0(x− x′)t<t′ = 0

because no poles are enclosed and this now obeys the boundary
condition.
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An excellent discussion of all of these issues can be found in [Arfken 4th
ed. 417, 427; Landau 84-88; Bj RQM 85; Cushing 315; Greiner QED 27;
Halzen and Martin 145-150]

The key integral that we have been considering is of the form

I =
∫ ∞
−∞

dω
e−iωt

ω − ω0

and with the pole shifted below the real axis this is

I(ε) =
∫ ∞
−∞

dω
e−iωt

ω − ω0 + iε

and let’s summarize our results as

It>0 = −πi e−iω0t

It<0 = +πi e−iω0t

and

I(ε)t>0 = −2π i e−iω0t

I(ε)t<0 = 0

When we leave the pole on the real axis the integral
∞∫
−∞

is actually the

Cauchy Principal Value defined as [Arfken 4th ed., p. 417; Landau 88]

P

∫ ∞
−∞

f(x)dx ≡ lim
δ→0

[∫ x0−δ

−∞
f(x)dx+

∫ ∞
x0+δ

f(x)dx

]

with the pole at x = x0. As discussed by [Arfken 417, 418] the Cauchy
Principal value is actually a cancelling process. See also [Landau 85-88].
This is because in the vicinity of the simple pole we have

f(x) ≈ a

x− x0

which is odd relative to x0 and so the large singular regions cancel out
[Arfken 4th ed., 417, 418].

The Principal Value Prescription (i.e. our first method with the pole left
on the axis) and the iε Prescription are related. Consider [Merzbacher, old
edition]

1
ω ± iε =

ω ∓ iε
ω2 + ε2

=
ω

ω2 + ε2
∓ iε

ω2 + ε2
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and using [Merzbacher 3rd ed., p. 631]

δ(x) =
1
π

lim
ε→0+

ε

x2 + ε2

we have
1

ω ± iε =
ω

ω2 + ε2
∓ iπ δ(ω)

The first term on the right hand side becomes 1
ω as ε → 0 except if ω = 0.

If f(ω) is a well behaved function we have [Merzbacher, old ed., p. 85]

lim
ε→0

∫ ∞
−∞

f(ω)
ω

ω2 + ε2
dω = lim

ε→0

[∫ −ε
−∞

f(ω)
dω

ω
+
∫ ∞
ε

f(ω)
dω

ω

+
∫ ε

−ε
f(ω)

ωdω

ω2 + ε2

]
= P

∫ ∞
−∞

f(ω)
dω

ω
+ f(0) lim

ε→0

∫ ε

−ε

ωdω

ω2 + ε2

= P

∫ ∞
−∞

f(ω)
dω

ω
+ 0

where the last integral vanishes because the integrand is an odd function of
ω. Thus we can write [Merzbacher, old ed., p. 85]

lim
ε→0

1
ω ± iε = P

1
ω
∓ iπ δ(ω)

and we can also write [Cushing 315] (with the pole at ω = ω0 instead of
ω = 0)

P

∫
f(ω)dω
ω − ω0

=
∫

f(ω)dω
ω − ω0 ± iε

± iπ f(ω0)
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Example Verify the above formula for our previous integral
I =

∫
dω e−iωt

ω−ω0
.

Solution For t > 0 we had

P

∫
e−iωtdω
ω − ω0

= −πi e−iω0t

and ∫
e−iωtdω

ω − ω0 + iε
= −2πi e−iω0t

Now f(ω0) = e−iω0t, so that∫
e−iωtdω

ω − ω0 + iε
+ iπ f(ω0) = −2πi e−iω0t + πi e−iω0t

= −πi e−iω0t

= P

∫
e−iωtdω
ω − ω0

in agreement with the formula. For t < 0 we had

P

∫
e−iωtdω
ω − ω0

= +πi e−iω0t

and ∫
e−iωtdω

ω − ω0 + iε
= 0

so that ∫
e−iωtdω

ω − ω0 + iε
+ iπ f(ω0) = 0 + iπ e−iω0t

= P

∫
e−iωtdω
ω − ω0

also in agreement with the formula.
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Example Show that the θ function defined as

θ(t− t′) =

{
1 if t > t′

0 if t < t′

can be written as

θ(t− t′) = lim
ε→0

−1
2πi

∫ ∞
−∞

dω
e−iω(t−t′)

ω + iε

Solution We showed previously that with I(ε) ≡
∞∫
−∞

dω e−iωt
ω−ω0+iε

we get

I(ε)t>0 = −2πi e−iω0t

I(ε)t<0 = 0

Replacing t with t− t′ and ω0 = 0 gives I =
∫
dω e

−iω(t−t′)
ω+iε and

It>t′ = −2πi
It<t′ = 0

which verifies the above integral representation of θ.

Now let’s finish the job of evaluating the position space Green function
[Bj RQM 84, Greiner QED 27, Kaku 73-74]
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Example Evaluate the position space Green function, consistent
with the causality boundary condition, in terms of θ(t− t′). Also
write the answer in terms of the plane wave states

φp(x) ≡ e−ip·x

(2π)3/2

Solution To satisfy causality we use the iε prescription to eval-
uate the integral which gave

G0(x− x′)t>t′ = −i
∫

d3p

(2π)3
ei~p·(~x−~x

′)e−iω0(t−t′)

and
G0(x− x′)t<t′ = 0

with ω0 ≡ ~p 2/2m. This can be written

G0(x− x′) = −i
∫

d3p

(2π)3
ei~p·(~x−~x

′)−iω0(t−t′)θ(t− t′)

Using the plane wave states we have

φp(x)φ∗p(x
′) =

1
(2π)3

e−ip·xeip·x
′

=
1

(2π)3
e−ip·(x−x

′)

=
1

(2π)3
e−i[ω(t−t′)−~p·(~x−~x′)]

giving

G0(x− x′) = −iθ(t− t′)
∫
d3p φp(x)φ∗p(x

′)

[Bj RQM 86, Kaku 74]

Finally the d3p integrating gives (see Problems) [Bj RQM 86]

G0(x− x′) = −i
(

m

2πi(t− t′)

)3/2

e
im|~x−~x′|2

2(t−t′) θ(t− t′)

See footnote in [Bj RQM 86] discussing the Schrodinger equation
and the Diffusion equation.
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Klein-Gordon Propagator

We originally wrote the Klein-Gordon propagator ∆F (k) = 1
k2−m2 but

then digressed on a lengthy discussion of the Schrodinger propagator in order
to illustrate the integration techniques. We now return to the Klein-Gordon
propagator. Consider the following iε prescription

∆F (k) =
1

k2 −m2 + iε

Write this as

1
k2 −m2 + iε

=
1

k2
0 − ~k2 −m2 + iε

=
1

k2
0 − E2 + iε

with E ≡ +
√
~k2 +m2

We can show (see Problems)

1
k2 −m2 + iε

=
1

k2
0 − E2 + iε

=
1

2k0

[
1

k0 − E + iε
+

1
k0 + E − iε

]
Recall that the momentum space propagator ∆F (k) was defined in terms of
the Fourier transform

∆F (x− y) =
∫

d4k

(2π)4
e−ik.(x−y)∆F (k)

Performing the integration as before we get, with d
˜̃
k ≡ d3k

(2π)32ωk
(see Prob-

lems)

∆F (x− x′) = −iθ(t− t′)
∫
d
˜̃
k e−ik·(x−x

′) − iθ(t′ − t)
∫
d
˜̃
k eik·(x−x

′)

= −iθ(t− t′)
∫
d
˜̃
k φk(x)φ∗k(x

′)− iθ(t′ − t)
∫
d
˜̃
k φ∗k(x)φk(x′)
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Example Show that i∆F (x− x′) = 〈0|Tφ(x)φ(x′)|0〉
(Note this is also equal to

= 〈0|Tφ(x)φ†(x′)|0〉

for Hermitian fields [BjRQF42].)

Solution The time ordered product is

TA(t1)B(t2) ≡
{
A(t1)B(t2) if t1 > t2
B(t2)A(t1) if t2 > t1

≡ θ(t1 − t2)A(t1)B(t2) + θ(t2 − t1)B(t2)A(t1)

Thus for the fields

Tφ(x)φ(x′) = θ(t− t′)φ(x)φ(x′) + θ(t′ − t)φ(x′)φ(x)

or

〈0|Tφ(x)φ(x′)|0〉 = θ(t− t′)〈0|φ(x)φ(x′)|0〉+ θ(t′ − t)〈0|φ(x′)φ(x)|0〉

Thus we want to evaluate 〈0|φ(x)φ(x′)|0〉 and 〈0|φ(x′)φ(x)|0〉. Now

φ(x) =
∫
dk̃ (a~ke

−ik·x + a†~ke
ik·x)

with dk̃ ≡ d3k√
(2π)32ω

and ω ≡
√
~k2 +m2 and ω′ ≡

√
~k′2 +m2. Evaluate

〈0|φ(x)φ(x′)|0〉

=
〈0|

(2π)3

∫
d3k√

2ω
d3k′√

2ω′
(a~ke

−ik·x + a†~ke
ik·x)(a~k′e

−ik′·x′ + a†~k′e
ik′·x′)|0〉

=
∫
dk̃ dk̃′ 〈0|a~ka~k′e

−i(k·x+k′·x′) + a~ka
†
~k′
e−i(k·x−k

′·x′)

+a†~ka~k′e
i(k·x−k′·x′) + a†~ka

†
~k′
ei(k·x+k′·x′)|0〉

However a~k|0〉 = 0 and 〈0|a†k = 0. Thus the 1st, 3rd and 4th terms are zero.
We are only left with

〈0|a~ka
†
~k′
|0〉 = δ(~k − ~k′)
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Continuing

〈0|φ(x)φ(x′)|0〉 =
1

(2π)3

∫
d3k√

2ω
d3k′√

2ω′
δ(~k − ~k′)e−i(ωt−~k·~x−ω′t′+~k′·~x′)

=
1

(2π)3

∫
d3k

2ω
ei
~k.(~x−~x′)−iω(t−t′)

=
1

(2π)3

∫
d3k

2ω
e−ik·(x−x

′)

Obviously we also have

〈0|φ(x′)φ(x)|0〉 =
1

(2π)3

∫
d3k

2ω
e−ik·(x

′−x)

=
1

(2π)3

∫
d3k

2ω
eik·(x−x

′)

Thus

〈0|Tφ(x)φ(x′)|0〉 = θ(t− t′)〈0|φ(x)φ(x′)|0〉+ θ(t′ − t)〈0|φ(x′)φ(x)|0〉

= θ(t− t′)
∫

d3k

(2π)32ω
e−ik·(x−x

′) + θ(t′ − t)
∫

d3k

(2π)32ω
eik·(x−x

′)

= i∆F (x− x′)
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Other Propagators

Recall that

φ(x) =
∫
dk̃[a~ke

−ik·x + a†~ke
ik·x]

≡ φ+(x) + φ−(x) [Kaku 152; Mandl & Shaw 44]

From this we can define other propagators (see Problems)

i∆±(x− y) ≡ [φ±(x), φ∓(y)] = ±
∫

d3k

(2π)32ω~k
e∓ik·(x−y)

where ω~k ≡ +
√
~k2 +m2 giving (see Problems)

i∆(x− y) ≡ [φ(x), φ(y)] = i∆+(x− y) + i∆−(x− y)

or just ∆(x) = ∆+(x) + ∆−(x). Thus one has [Mandl & Shaw 51]

∆(x) = ∆+(x) + ∆−(x) =
−1

(2π)3

∫
d3k

ω~k
sin k · x

=
−i

(2π)3

∫
d4k δ(k2 −m2)ε(k0)e−ik·x

with ε(k0) = k0
|k0| =

{
+1 for k0 > 0
−1 for k0 < 0

Note also that ∆−(x) = −∆+(−x)
These propagators are related to the Feynman propagator by [Mandl

and Shaw 54]
∆F (x) = θ(t)∆+(x)− θ(−t)∆−(x)

or [Schwabl 283]

∆F (x− x′) = θ(t− t′)∆+(x− x′)− θ(t′ − t)∆−(x− x′)

which can be written [Schwabl 283, Mandl and Shaw 54]

∆F (x) = ±∆±(x) for t ><0
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Example Show that

∆F (x− x′) = θ(t− t′)∆+(x− x′)− θ(t′ − t)∆−(x− x′)

where
i∆F (x− x′) = 〈0|Tφ(x)φ(x′)|0〉

and
i∆±(x− y) ≡ [φ±(x), φ∓(y)].

Solution

i∆F (x− x′) = 〈0|Tφ(x)φ(x′)|0〉
= θ(t− t′)〈0|φ(x)φ(x′)|0〉+ θ(t′ − t)〈0|φ(x′)φ(x)|0〉

Thus to do this problem we really need to show that

〈0|φ(x)φ(x′)|0〉 = [φ+(x), φ−(x′)]

and
〈0|φ(x′)φ(x)|0〉 = −[φ−(x), φ+(x′)]

Let’s only do the first of these. The question is, how do these relations
come about ? The answer is easy. Commutators are just c-numbers, i.e.
classical functions or numbers. Thus 〈0|c|0〉 = c〈0|0〉 = c for any c-number.
Therefore

[φ+(x), φ−(x′)] = 〈0|[φ+(x), φ−(x′)]|0〉
= 〈0|φ+(x)φ−(x′)|0〉 − 〈0|φ−(x′)φ+(x)|0〉
= 〈0|φ+(x)φ−(x′)|0〉

because φ+|0〉 = 0.
Now φ = φ+ + φ−. Thus

φ|0〉 = φ+|0〉+ φ−|0〉 = 0 + φ−|0〉 = φ−|0〉

and similarly
〈0|φ = 〈0|φ+

giving
[φ+(x), φ−(x′)] = 〈0|φ(x)φ(x′)|0〉

as required. (Proof of the other relation follows similarly).
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3.7 Complex Klein-Gordon Field

[Schwabl 285; Kaku 69; Huang 24-25]
[W. Pauli and V. F. Weisskopf, Helv. Phys. Acta, 7, 709 (1934)]
Charged particles cannot be described with a real scalar field because it

only has one component, whereas a minimum of two components is needed
to describe charge. Define

φ ≡ 1√
2

(φ1 + iφ2) and φ† ≡ 1√
2

(φ1 − iφ2)

where φ1 and φ2 are real fields. The normalization factor 1√
2

is chosen so
that φi has the same renormalization as the real scalar field discussed before.
A suitable classical Lagrangian is (with |φ|2 = φφ†) [Huang 24]

L = ∂µφ
† ∂µφ−m2|φ|2

=
1
2

2∑
i=1

(∂µφi ∂µφi −m2φ2
i )

which is just the sum of the Lagrangian for the real fields.
The Euler-Lagrange equations give the equations of motion [Schwabl

285]
(22 +m2)φ = 0 and (22 +m2)φ† = 0

with the conjugate momenta being [Kaku 70; Schwabl 285]

Π = φ̇† and Π† = φ̇

with the equal time commutation relations [Kaku 70; Schwabl 285]

[φ(~x, t),Π(~x′, t)] = [φ(~x, t), φ̇†(~x′, t)] = iδ(~x− ~x′)
[φ†(~x, t),Π†(~x′, t)] = [φ†(~x, t), φ̇(~x′, t)] = iδ(~x− ~x′)

and [Schwabl 285]

[φ(~x, t), φ(~x′, t)] = [Π(~x, t),Π(~x′, t)] = 0
[φ†(~x, t), φ†(~x′, t)] = [Π†(~x, t),Π†(~x′, t)] = 0

We Fourier expand each component φi(x) exactly as before [Kaku 70; Huang
24]

φi(x) =
∫
dk̃ (a

i~k
e−ik·x + a†

i~k
eik·x)
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where the commutation relations are [Kaku 70; Huang 25]

[a
i~k
, a†
j~k′

] = δ(~k − ~k′)δij

However rather than treating the i fields separately, we can combine them
as we did with the wave functions φ(x). Define [Kaku 70; Huang 25]

a~k ≡
1√
2

(a
1~k

+ ia
2~k

) and b~k ≡
1√
2

(a
1~k
− ia

2~k
)

so that the Fourier expansion now becomes [Huang 25; Schwabl 285]

φ(x) =
∫
dk̃ (a~ke

−ik·x + b†~ke
ik·x)

(Exercise: Prove this result) and for the other field, obviously it is

φ†(x) =
∫
dk̃(a†~ke

ik·x + b~ke
−ik·x)

The new commutation relations are [Kaku 70; Schwabl 286; Huang 25]

[a~k, a
†
~k′

] = [b~k, b
†
~k′

] = δ~k~k′

and
[a~k, a~k′ ] = [b~k, b~k′ ] = [a~k, b~k′ ] = [a~k, b

†
~k′

] = 0

There are now two occupation-number operators, for particles a and for
particles b [Schwabl 286]

N
a~k
≡ a†~ka~k and N

b~k
≡ b†~kb~k

where a†~k and a~k create and annihilate a particles and b†~k and b~k create and
annihilate b particles. The vacuum state is defined by [Schwabl 286]

a~k|0〉 = b~k|0〉 = 0

The four momentum is [Schwabl 286; Mandl and Shaw 49; Greiner FQ 93]

Pµ = (H, ~P ) =
∑
~k

kµ(N
a~k

+N
b~k

)

giving
H =

∑
~k

ω~k(Na~k
+N

b~k
)

and
~P =

∑
~k

~k(N
a~k

+N
b~k

)
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3.7.1 Charge and Complex Scalar Field

Recall the real scalar field Lagrangian L = 1
2(∂µφ∂µφ − m2φ2) and the

complex scalar field Lagrangian

L = ∂µφ
†∂µφ−m2|φ|2 =

1
2

2∑
i=1

(∂µφi∂µφi −m2φ2
i )

with |φ|2 ≡ φφ†. The complex scalar field Lagrangian (and action) is invari-
ant under the transformation

φ(x)→ eiqθφ(x) φ†(x)→ e−iqθφ†(x)

which generates a U(1) symmetry [Kaku 70]. Recall that before we had (for
small αi = εi)

ηr(x)→ η′r(x) = eiαiXiηr(x) ≈ (1 + iεiXi)ηr(x)

giving
δηr(x) = η′r(x)− ηr(x) = iεiXiηr(x)

Our two fields are η1 ≡ φ and η2 ≡ φ† giving (with small θ = ε)

δφ(x) = iqεφ(x) and δφ†(x) = −iqεφ†(x)

Recall the Noether current

jµ ≡
∂L

∂(∂µηr)
∆ηr − Tµνδxν

with

Tµν ≡
∂L

∂(∂µηr)
∂νηr − gµνL

Also recall the relation between local and total variations

δηr(x) = ∆ηr(x)− ∂ηr
∂xµ

δxµ

For δxν = 0, we have δη(x) = ∆η(x) [Schwabl 272] and therefore

jµ =
∂L

∂(∂µηr)
δηr

=
∂L

∂(∂µφ)
δφ+

∂L
∂(∂µφ†)

δφ†

=
∂L

∂(∂µφ)
iqεφ+

∂L
∂(∂µφ†)

(−i)qεφ†
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and with L = ∂µφ
†∂µφ−m2φφ† = gµν∂

νφ†∂µφ−m2φφ† gives

∂L
∂(∂µφ)

= gµν∂
νφ† = ∂µφ

†

and
∂L

∂(∂µφ†)
= ∂µφ

Thus the Noether current is

jµ = (∂µφ†)iqεφ− (∂µφ)iqεφ†

Once again we drop the constant factor ε and insert a minus sign to
define a new current [Kaku 71, Mosel 19, Schwabl 286, Huang 25]

jµ = iq[(∂µφ)φ† − (∂µφ†)φ]

which agrees exactly with the 4-current derived previously!
The conserved charge (dQdt = 0) is therefore [Kaku 71, Mosel 19]

Q =
∫
d3x jo = iq

∫
d3x(φ̇φ† − φ̇†φ)

= q

∫
d3k(a†~ka~k − b

†
~k
b~k)

= q

∫
d3k(N

a~k
−N

b~k
)

(Exercise: Prove this result). Here jo matches exactly our expression for ρ
derived previously! [Kaku 71] gives an excellent discussion of the physical
interpretation of this charge. Also note that “charge” is used in a generic
sense [Huang 26] since electromagnetic coupling has not yet been turned on.

Compare this to our result from Chapter 1 which was (with probability
current density jµ = (ρ,~j ) = ψ̄γµψ )

Q =
∫
d3x j0 = q

∫
d3x ψ̄ γ0 ψ

= q

∫
d3x ρ

where the probability density was ρ = ψ̄γ0ψ = ψ†γ0γ0ψ = ψ†ψ. This was an
expression in terms of the classical Dirac field ψ. Above we now have Q in
terms of the quantized field operators a, a†, b, b† for the complex scalar field.
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3.8 Summary

Two useful integrals are:

1
(2π)3

∫
d3xe±i(

~k−~k′).~x = δ(~k − ~k′)

δ4(x− y) =
∫

d4k

(2π)4
e−ik·(x−y)

3.8.1 KG classical field

The massive Klein-Gordon Lagrangian is

LKG =
1
2

(∂µφ∂µφ−m2φ2)

giving the KGE (using p2 → −22)

(22 +m2)φ = 0
(p2 −m2)φ = 0

The covariant momentum density is

Πµ = ∂µφ

giving the canonical momentum

Π ≡ Πo = φ̇(x)

and Hamiltonian density

H =
1
2

[Π2 + (~∇φ)2 +m2φ2]

and momentum
~P = −

∫
d3x φ̇(x)~∇φ(x)

The Fourier expansion of the KG field is

φ(~x, t) ≡ φ+(x) + φ−(x) =
∫
dk̃
[
a~ke
−ik·x + a†~ke

ik·x
]

The conjugate momentum is

Π(~x, t) = φ̇(~x, t) ≡ Π+(x) + Π−(x)

= −i
∫
dk̃ ω

[
a~ke
−ik·x − a†~ke

ik·x
]
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In the above equations (with k0 ≡ ω = +
√
~k2 +m2)

dk̃ ≡ d3k√
2ω(2π)3

=

√
2ω

(2π)3
d4kδ(k2 −m2) θ(ko)

The integrals are cast into discrete form with the replacement∫
d3k → Σ~k.

3.8.2 Klein-Gordon Quantum field

To develop the QFT we impose the equal time commutation relations

[φ(~x, t),Π(~x′, t)] = iδ(~x− ~x′)
and

[φ(~x, t), φ(~x′, t)] = [Π(~x, t),Π(~x′, t)] = 0

which imply
[a(~k), a†(~k′)] = δ(~k − ~k′)

and
[a(~k), a(~k′)] = [a†(~k), a†(~k′)] = 0

Defining
N~k ≡ a

†
~k
a~k

the Hamiltonian and momentum can be re-written as

H =
∫
d3k

(
N~k +

1
2

)
ω

~P =
∫
d3k

(
N~k +

1
2

)
~k

The vacuum state is defined via

a~k|0〉 = 0

and the many body states are

| · · ·n~ki · · ·n~kj · · ·〉 =
∏
i

|n~ki〉

with
|n~ki〉 =

1√
n~k!

(
a†~k

)n~k |0〉
H| · · ·n~ki · · ·n~kj · · ·〉 =

∑
~k

nk ε(~k)| · · ·n~ki · · ·n~kj · · ·〉

where ε(~k) = h̄ω(~k).
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3.8.3 Propagator Theory

The non-free KGE is
(22 +m2)φ = J(x)

The Feynman propagator in position space is defined as

(22 +m2)∆F (x− y) ≡ −δ4(x− y)

so that the solution to the non-free KGE is

φ(x) = φ0(x)−
∫
d4y∆F (x− y)J(y)

where φ0(x) is the solution with J = 0. The momentum space Feynman
propagator is defined through the Fourier transform

∆F (x− y) ≡
∫

d4k

(2π)4
e−ik·(x−y)∆F (k)

The usual method of solution for propagators or Green functions is to solve
for ∆F (k) and then do a contour integral to get ∆F (x − y) rather than
solving for ∆F (x− y) directly. We get

∆F (k) =
1

k2 −m2

which is the inverse of the momentum operator in the free KGE. This finally
leads to

∆F (x− x′) = −iθ(t− t′)
∫
dk̃ e−ik·(x−x

′) − iθ(t′ − t)
∫
dk̃ eik·(x−x

′)

One can also show that

i∆F (x− x′) = 〈0|Tφ(x)φ(x′)|0〉
= 〈0|Tφ(x)φ†(x′)|0〉

where the second line is true for Hermitian fields [BjRQF42].
Other useful propagators are

i∆±(x− y) ≡ [φ±(x), φ∓(y)] = ±
∫
d
˜̃
ke∓ik·(x−y)

giving

i∆(x− y) ≡ [φ(x), φ(y)] = −i∆+(x− y) + i∆−(x− y)
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with

∆(x) = ∆+(x) + ∆−(x) = −
∫

d3k

(2π)3ω~k
sin k · x

These other propagators are related to the Feynman propagator by

∆F (x) = θ(t)∆+(x)− θ(−t)∆−(x)

or
∆F (x) = ±∆±(x) for t ><0

3.8.4 Complex KG field

Not summarized; see text.

3.9 References and Notes

Good references for this chapter are [Teller, Bergstrom and Goobar, Roman,
Halzen and Martin, Muirhead, Leon, Goldstein].
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Chapter 4

Dirac Field

We have seen that the KGE gives rise to negative energies and non-positive
definite probabilities and for these reasons was discarded as a fundamental
quantum equation. These problems arise because the KGE is non-linear in
∂
∂t , unlike the SE. Dirac thus sought a relativistic quantum equation linear
in ∂

∂t , like the SE. We shall see that therefore Dirac was forced to invent a
matrix equation.

The ‘derivation’ of the DE presented here follows [Griffiths, pg. 215].
Dirac was searching for an equation linear in E or ∂

∂t . Instead of starting
from

p2 −m2 = 0

his strategy was to factor this relation, which is easy if we only have p0 (i.e.
~p = 0), namely (with p0 = p0)

(p0 −m)(p0 +m) = 0

and obtain two first order equations

p0 −m = 0 or p0 +m = 0

However it’s more difficult if ~p is included. Then we are looking for some-
thing of the form p2 −m2 = pµpµ −m2 = (βµpµ +m)(γνpν −m) where βµ

and γν are 8 coefficients to be determined. The RHS is

βµγνpµpν +m(γν − βν)pν −m2

For equality with LHS we don’t want terms linear in pν , thus γν = βν ,
leaving

p2 = pµpµ = γµγνpµpν

75
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i.e. (with (p1)2 = (p1)2)

(p0)2 − (p1)2 − (p2)2 − (p3)2 = (γ0)2(p0)2 + (γ1)2(p1)2 + (γ2)2(p2)2

+(γ3)2(p3)2 + (γ0γ1 + γ1γ0)p0p1

+(γ0γ2 + γ2γ0)p0p2 + (γ0γ3 + γ3γ0)p0p3

+(γ1γ2 + γ2γ1)p1p2 + (γ1γ3 + γ3γ1)p1p3

+(γ2γ3 + γ3γ2)p2p3

Here’s the problem; we could pick γ0 = 1 and γ1 = γ2 = γ3 = i but
we can’t get rid of the ‘cross terms’. At this point Dirac had a brilliant
inspiration; what if the γ’s are matrices instead of numbers? Since matrices
don’t commute we might be able to find a set such that

(γ0)2 = 1 (γ1)2 = (γ2)2 = (γ3)2 = −1

γµγν + γνγµ = 0 for µ 6= ν

Or, more succinctly, {γµ, γν} = 2gµν which is called a Clifford Algebra
where the curly brackets denote the anti-commutator {A,B} ≡ AB + BA.
It turns out that this can be done, but the smallest set of matrices are 4×4.
These are

γ0 ≡ β =
(
I 0
0 −I

)
~γ ≡ β~α ≡

(
0 ~σ
−~σ 0

)
γµ ≡ (β, β~α)

Let’s introduce everything else for completeness

γ5 ≡ iγ0γ1γ2γ3 =
(

0 I
I 0

)
σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)

~α ≡
(

0 ~σ
~σ 0

)
β ≡

(
1 0
0 −1

) γµ
†

= γ0γµγ0

i.e. γ0† = γ0, γi
†

= −γi

β−1 = β and γ5 = γ5

These conventions are used by the following authors: [Griffiths, Kaku,
Halzen & Martin].

Thus the Dirac equation is (p−m)ψ = 0 with A ≡ γµAµ . In coordi-

nate space (using pµ → i∂µ) it is (i∂ −m)ψ = 0 . In non-covariant notation
it is

Hψ = ih̄
∂ψ

∂t
with H ≡ ~α · ~p+ βm



4.1. PROBABILITY & CURRENT 77

The DE can be written in terms of 4-vectors (/p−m)ψ = 0 and is therefore
manifestly covariant.

4.1 Probability & Current

For the SE and KGE we used SE∗ and KGE∗ to derive the continuity equa-
tion. For matrices the generalization of complex conjugate (∗) is Hermitian
conjugate (†) which is the transpose of the complex conjugate. The DE is

(i/∂ −m)ψ = 0 = (iγµ∂µ −m)ψ

and DE† is (using (AB)† = B†A†)

ψ†(i/∂ −m)† = 0
= ψ†(−iγµ†∂µ −m) = 0 where ∂†µ = ∂µ
= ψ†(−iγ0γµγ0∂µ −m) = 0 using γµ† = γ0γµγ0

We want to introduce the Dirac adjoint (ψ is a column matrix)

ψ̄ ≡ ψ†γ0 (ψ̄ is a row matrix!)

Using γ0γ0 = 1 we get

ψ†(−iγ0γµγ0∂µ −mγ0γ0) = 0

⇒ ψ̄(iγµγ0∂µ +mγ0) = 0

and cancelling out γ0 gives, the Dirac adjoint equation,

ψ̄(i/∂ +m) = 0 ⇔ ψ̄(i
←
/∂ +m) = 0

Some sloppy authors write this as (i/∂+m)ψ̄ = 0 but this cannot be because

ψ̄ is a row matrix! The notation
←
/∂ however means that /∂ operates on ψ̄ to

the left, i.e. ψ̄
←
/∂ ≡ (∂µψ̄)γµ .

It’s very important not to get confused with this. The DE and DE† are
explicitly

(i/∂ −m)ψ = 0 ⇔ iγµ∂µψ −mψ = 0
ψ̄(i/∂ +m) = 0 ⇔ i(∂µψ̄)γµ +mψ̄ = 0
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Now let’s derive the continuity equation. Multiply DE from the left by ψ̄
and DE† from the right by ψ. Now one could get very confused writing

ψ̄(i/∂ −m)ψ = 0
ψ̄(i/∂ +m)ψ = 0

whereas what is really meant is [Halzen & Martin, pg. 103]

ψ̄(iγµ∂µψ −mψ) = 0
(i(∂µψ̄)γµ +mψ̄)ψ = 0

Adding these gives

ψ̄γµ∂µψ + (∂µψ̄)γµψ = 0 = ∂µ(ψ̄γµψ)

giving
jµ = (ψ̄γµψ) ≡ (ρ,~j)

or

ρ = ψ̄γ0ψ = ψ†ψ =
4∑
i=1

|ψi|2

which is now positive definite! The 3-current is

~j = ψ̄~γψ

[see also Mosel 17, 34]

4.2 Bilinear Covariants

ψ can be written


ψ1

ψ2

ψ3

ψ4

 and one can try to construct a scalar, such as

ψ†ψ = (ψ∗1 ψ
∗
2 ψ
∗
3 ψ
∗
4)


ψ1

ψ2

ψ3

ψ4

 = |ψ1|2 + |ψ2|2 + |ψ3|2 + |ψ4|2 but this is not

a Lorentz scalar (it’s got all + signs).
Rather, define the Dirac adjoint

ψ̄ ≡ ψ†γ0 = (ψ∗1 ψ∗2 − ψ∗3 − ψ∗4)
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and ψ̄ψ = |ψ1|2 + |ψ2|2 − |ψ3|2 − |ψ4|2 is a Lorentz scalar (see Bjorken and
Drell]. One can prove that the following quantities transform as indicated:

ψ̄ψ scalar (1 component)
ψ̄γ5ψ pseudoscalar (1 component)
ψ̄γµψ vector (4 component)
ψ̄γµγ5ψ pseudovector (4 component)
ψ̄σµνψ antisymmetric 2nd rank tensor (6 component)

where σµν ≡ i
2(γµγν − γνγµ).

4.3 Negative Energy and Antiparticles

4.3.1 Schrodinger Equation

The free particle SE is

− h̄2

2m
∇2ψ = ih̄

∂ψ

∂t

which has solution

ψ(x, t) = (C cos kx+D sin kx) e
i
h̄
Et ≡ ψE

=
(
Aeikx +Be−ikx

)
e
i
h̄
Et in 1-dimension.

Substituting gives

h̄k2

2m
ψ(x, t) = −Eψ(x, t) or

(
E +

h̄2k2

2m

)
ψ = 0

yielding

E = − h̄
2k2

2m

However it also has solution ψ(x, t) = (Aeikx +Be−ikx)e−
i
h̄
Et ≡ ψ−E

Substituting gives

h̄2k2

2m
ψ(x, t) = +Eψ(x, t) or

(
E − h̄2k2

2m

)
ψ = 0

yielding

E = +
h̄2k2

2m
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ψE and ψ−E are different solutions. The first one ψE corresponds to positive
energy and the second one ψ−E to negative energy. We are free to toss away
one solution as unphysical and only keep ψE .

However for KGE and DE the same solution ψ gives both positive and
negative energy. Of course we are not free to toss away one energy because
it’s in the solution. Whereas in the SE we got two different solutions for
positive and negative energy. If we want to get rid of negative energy in the
SE we toss away one solution. However in KGE and DE we always get both
positive and negative energy for all solutions. The only way to toss away
negative energy is to toss away all solutions; i.e. toss out the whole equation!

?Also reason why Einstein did not reject SR; E = ±
√
~p2 +m2 were

separate solutions; not part of same solution.

4.3.2 Klein-Gordon Equation

The free particle KGE is
(22 +m2)φ = 0

with

22 = − ∂2

∂t2
+∇2

A solution is
φ = Neip·x = Nei(Et−~p·~x)

Substituting gives
(E2 − ~p 2 +m2)φ = 0

which implies
⇒ E2 = ~p 2 +m2

or
E = ±

√
~p 2 +m2

Thus the single solution φ = Neip·x has both positive and negative energy
solutions. Another solution is

φ = Ne−ip·x = Ne−i(Et−~p·~x)

Substituting also gives the same as above, namely (E2 − ~p 2 +m2)φ = 0 or

E = ±
√
~p 2 +m2
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and again the single solution φ = Ne−ip·x has both positive and negative
energy solutions.

The interpretation of these states is as follows. For ~p = 0 (particle at rest)
then E = ±m. For ~p 6= 0, there will be a continuum of states above and
below E = ±m [Landau, pg. 225], with bound states appearing in between.
In QM there would be transitions to the negative energy continuum to infi-
nite negative energy. This also happens with the Dirac equation. However,
the DE describes, automatically, particles with spin. Dirac’s way out of the
negative energy catastrophe was to postulate that the negative energy sea
was filled with fermions and so the ???

E < 0

E > 0

E

- mc

0

p = 0 
2

mc 2 p = 0 

However for the KGE the negative energies are a catastrophe.

Also we can now clearly see the problem with ρ as calculated with the
KGE. Recall ρ = ih̄

2m

(
φ∗ ∂φ∂t − φ

∂φ∗

∂t

)
. For φ = e±ip·x we get ρ = ∓ h̄

mφ
∗φE

which gives negative ρ for positive or negative E. (Halzen & Martin, pg. 74]
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4.3.3 Dirac Equation

Let’s look for plane wave solutions of the form ψ(x) = w(~p)e−ip·x . Substi-

tuting into (i/∂ −m)ψ = 0 gives the momentum space DE (/p−m)w = 0 .
Actually, let’s first look at rest frame (~p = 0) solutions (RF). Writing the
DE as

Hψ = ih̄
∂ψ

∂t
with H = ~α · ~p+ βm

independent DE is Hψ = Eψ, which in the RF is

Hw = βmw =

(
mI 0
0 −mI

)
w = Ew,

The eigenvalues are E = m,m,−m,−m with eigenvectors [Halzen & Martin,
pg. 104] 

1
0
0
0




0
1
0
0




0
0
1
0




0
0
0
1


Thus the DE has positive (E = +m) and negative (E = −m) energy solu-
tions! (We shall look at ~p 6= 0 solutions in a moment)

Let’s summarize so far (Aitchison & Hey, pg. 71)

Probability (ρ) Energies for same solution ψ

SE + +
KGE − +, −
DE + +, −

Thus both the KGE and DE have negative energies.

The DE describes fermions (see next section). Dirac’s idea was that
the negative energy sea was filled with fermions and via PEP prevented the
negative energy cascade of positive energy particles. Dirac realized if given
particles in sea energy of 2mc2 create holes. Dirac Sea not taken seriously
until positron discovered!! (1932 Anderson)
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4.4 Free Particle Solutions of Dirac Equation

Before proceeding recall the following results:

σx =
(

0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)

~σ · ~p =
(
Pz p−
p+ −pz

)
≡
(

pz px − ipy
px + ipy −pz

)
Let’s now look at ~p 6= 0 solutions (i.e. not in rest frame). As before, we look
for solutions of the form ψ(x) = w(~p)e−ip·x Substituting into (i/∂ −m)ψ = 0

gives the momentum space DE (/p −m)w = 0. Using /p =
(

E −~σ · ~p
~σ · ~p −E

)
gives, with w ≡

(
wA
wB

)

(/p−m)w =
(
E −m −~σ · ~p
~σ · ~p −E −m

)(
wA
wB

)
= 0 =

[
(E −m) wA − ~o · ~p wB
~σ · ~p wA − (E +m) wB

]

giving

wA =
~σ · ~p
E −m wB and wB =

~σ · ~p
E +m

wA

Combining yields

wA =
(~σ · ~p )2

E2 −m2
wA =

~p 2

E2 −m2
wA

because (~σ · ~p)2 = ~p 2. Thus

E2 = ~p 2 +m2 or E = ±
√
~p 2 +m2

Thus again we see the negative energy solutions ! (this time for the ~p 6= 0
DE)

Our final solutions are

w =
(
wA
wB

)
=
(

wA
~σ·~p
E+mwA

)
or

( ~σ·~p
E−mwB
wB

)
with wA and wB left unspecified, which means we are free to choose them
[Aitchison & Hey 69] as

wA, wB =
(

1
0

)
or

(
0
1

)
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We have the following possibilities

Pick wA =
(

1
0

)
⇒ wB =

~o · ~p
E +m

(
1
0

)
=

1
E +m

(
pz
p+

)
(1) p± ≡ px ± ipy

Pick wA =
(

0
1

)
⇒ wB =

~o · ~p
E +m

(
0
1

)
=

1
E +m

(
p−
−pz

)
(2)

Pick wB =
(

1
0

)
⇒ wA =

~o · ~p
E −m

(
1
0

)
=

1
E −m

(
pz
p+

)
(3)

Pick wB =
(

0
1

)
⇒ wA =

~o · ~p
E −m

(
0
1

)
=

1
E −m

(
p−
−pz

)
(4)

But the question is, do we use E = +
√
~p 2 +m2 or E = −

√
~p 2 +m2? Well,

for (1) and (2) we must use E = +√ otherwise 1
E+m blows up for ~p = 0.

For (3) and (4) we must use E = −√ otherwise 1
E−m blows up for ~p = 0.

The term E = +√ is called the particle solution. The term E = −√ is
called the antiparticle solution.

Rewrite as, with χ(1) ≡
(

1
0

)
and χ(2) ≡

(
0
1

)

w(1)(~p) = N


1
0
pz

E+m
p+

E+m

 = N

(
1
~σ·~p
E+m

)
χ(1)

w(2)(~p) = N


0
1
p−
E+m
−pz
E+m

 = N

(
1
~o·~p
E+m

)
χ(2)

with E ≡ +
√
~p 2 +m2

and also

w(3)(~p) = N


pz

E−m
p+

E−m
1
0

 = N

( ~σ·~p
E−m

1

)
χ(1)

w(4)(~p) = N


p−
E−m
−pz
E−m

0
1

 = N

( ~σ·~p
E−m

1

)
χ(2)

with E ≡ −
√
~p 2 +m2
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or

w(s)(~p) = N

(
1
~o·~p
E+m

)
χ(s) with E ≡ +

√
~p 2 +m2

w(s+2)(~p) = N

( ~σ·~p
E−m

1

)
χ(s) with E ≡ −

√
~p 2 +m2

 s = 1, 2

[Halzen & Martin, pg. 105]
But all free particles carry positive energy! Thus re-interpret w(3) and w(4)

as positive energy antiparticle states

w(s+2)(~p) = N

( ~σ·~p
−
√
~p 2+m2−m

1

)
χ(s)

w(s+2)(−~p) = N

( −~σ·~p
−
√
~p 2+m2−m

1

)
χ(s) = N

( ~σ·~p√
~p 2+m2+m

1

)
χ(s)

... Define u(p, s) = u(s)(p) ≡ w(s)(~p) u(1,2)(p) = w(1,2)(~p)
v(p, s) = v(s)(p) ≡ w(s+2)(−~p) v(1,2)(p) = w(3,4)(−~p)

(Me & Kaku)
everyone else: v(1,2)(p) = w(4,3)(−~p)

Note: Bj writes u(p, s) and w(~p). Gross writes u(~p, s)

u(1) = N


1
0
pz

E+m
p+

E+m

 u(2) = N


0
1
p−
E+m
−pz
E+m



v(2) = N


pz

E+m
p+

E+m
1
0

 v(1) = N


p−
E+m
−pz
E+m

0
1





all with E ≡ +
√
~p 2 +m2

= v(1) (Kaku) = v(2) (Kaku) Kaku different
from everyone else

u = N

(
1
~σ·~p
E+m

)
χ v = N

( ~σ·~p
E+m

1

)
χ
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u(1), v(2) → χ(1) =
(

1
0

)
u(2), v(1) → χ(2) =

(
0
1

)

Kaku N =

√
E +m

2m
~σ · ~p =

(
pz p−
p+ −pz

)
Halzen & Martin, pg. 107
ψ(x) = w(~p)e−ip·x ψ(x) = w(−~p)e−i(−p·x)

⇒ ψ(x) = u(~p)e−ip·x ψ(x) = v(p)e+ip·x

(/p−m)w(~p) = 0 (−/p−m)w(−~p) = 0
⇒ (/p−m)u = 0 ⇒ (/p+m)v = 0

The adjoints satisfy

ū(/p−m) = 0 and v̄(/p+m) = 0

Normalization [Muirhead, pg. 71ff; Griffiths, pg. 220 footnotes]

The most common conventions are, with E ≡ +
√
~p2 +m2 everywhere be-

low
Bjorken & Drell, Kaku, Greiner, Sterman

u†u =
E

m
⇒ N =

√
E +m

2m
but spurious difficulties when m→ 0

Griffiths, Halzen & Martin

u†u = 2E ⇒ N =
√
E +m

Bogoliubov & Shirkov
u†u = 1

These odd-looking normalizations come by specifying ūu. Using the result

ūγµu = pu

m ūu (Problem 4.7) we have u†γ0γµu = pµ

m ūu and with µ = 0 and

γ0γ0 = 1 we get

u†u =
E

m
ūu

Thus ūu = 1 ⇒ u†u = E
m . Actualy the more general normalization, in this

case, is ū(r)u(s) = δrs (see Problem 4.8).

Alternatively we can specify v̄v = −1 , i.e. v̄(r)v(s) = −δrs [Kaku, pg.
754]
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4.5 Classical Dirac Field

The Dirac Lagrangian is [Mosel 34]

LD = ψ̄(i/∂ −m)ψ

from which one can obtain the Dirac equation and its adjoint (see Problems).

NNN - now handwriting

4.5.1 Noether spacetime current

4.5.2 Noether internal symmetry and charge

4.5.3 Fourier expansion and momentum space

References: [Mosel 35, Greiner FQ 123, Peskin 52, Huang 123, Schwabl 290,
Kaku 86]

We now wish to expand the Dirac field in terms of creation and anni-
hilation operators. Most books just write down the answer (as we shall)
but [Greiner FQ 123] derives the result very clearly using the same method
that we used for the Klein-Gordon field where one proves that the expansion
must contain two terms.

The best discussion as to why the Dirac creation and annihilation op-
erators must obey anticommutation relations is given in [Peskin 52-56] and
[Greiner FQ 129].

Because of the normalization of our Dirac spinors (see previous chapter)
we will have a different normalization constant in our Fourier expansion of
the Dirac field, as compared to the KG case. Because of this the measure
for fermions will be [IZ 114, 147, 703]

NNN - now handwriting
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4.6 Dirac QFT

4.6.1 Derivation of b, b†, d, d† Anticommutators

4.7 Pauli Exclusion Principle

4.8 Hamiltonian, Momentum and Charge in terms
of creation and annihilation operators

4.8.1 Hamiltonian

4.8.2 Momentum

4.8.3 Angular Momentum

4.8.4 Charge

4.9 Propagator theory

4.10 Summary

4.10.1 Dirac equation summary

4.10.2 Classical Dirac field

4.10.3 Dirac QFT

4.10.4 Propagator theory

4.11 References and Notes

Mandl & Shaw, Teller, Sakurai QM, Leon, Merzbacher

S matrix and G function Bj RQM 83,97,100

S matrix without SE, Bj RQF 177



Chapter 5

Electromagnetic Field

5.1 Review of Classical Electrodynamics

5.1.1 Maxwell equations in tensor notation

5.1.2 Gauge theory

5.1.3 Coulomb Gauge

5.1.4 Lagrangian for EM field

5.1.5 Polarization vectors

References: [Weidner and Sells, 1st ed.,p.975; GriffithsEM, 1st ed., p. 350;
Jackson, 2nd ed. p. 274; Schwabl 313; Mandl and Shaw 129; Guidry 86,87;
GreinerFQ 161, 177]. Note that Guidry and Schwabl are excellent.

In general transverse waves can be linearly or circularly polarized. A
nice elementary discussion can be found in [Weidner and Sells, 1st ed.,p.975;
GriffithsEM, 1st ed., p. 350]. A circularly polarized wave can be made out
of two linearly polarized waves if the two linear waves are out of phase. (If
they are in phase then they combine to form a linearly polarized wave at a
different angle.) To produce a linearyly polarized wave on a rope just jiggle
the rope up and down for a linearly polarized wave in the vertical direc-
tion. The circularly polarized wave can be produced by moving one’s hand,
which is holding the rope, in a circular fashion. One can rotate clockwise or
counterclockwise to produce circularly polarized states of opposie helicity.

An elliptically polarized wave is formed from two linearly polarized waves
out of phase but with each linearly polarized wave having a differnt ampli-
tude. The amplitudes are the same for a circular wave.
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Just as the elliptically or circularly polarized wave can be created from
two linear polarized waves (linear combination of them), similarly a linearly
polarized wave can be built from a linear combination of two circularly
polarized wave. Thus any wave in general can be represented in terms of
linearly polarized basis states or circularly polarized basis states. This is
discussed from a mathematical point of view in [Jackson, 2nd ed. p. 274].
Even though it should be obvious, note that the treatment of polarization
vectors from the point of view of classical electrodynamics [Jackson] is the
same as the quantum field treatments. That is, the polarization vectors used
are the same in the classical and quantum case.

In general the linear polarization basis states are described by real po-
larization vectors ~ε1 and vε2. (As we shall see below there are only two,
not four, possible states for photons.) The circularly polarized states are
described by complex basis vectors, say written as ~ε+ and ~ε−.

These states are written in terms of each other

~ε± =
1√
2

(~ε1 ± iε2)

The circularly polarized states are complex, which is an easy way of
allowing for a phase difference between the two linearly polarized states out
of which the circular states are constructed. [Jackson, 2nd ed. p. 274]

Finally, in describing our quantum field states for the photon it does not
matter whether we use the linearly polarized basis states or the circularly
polarized ones. Different authors choose different basis states. We will know
what states a particlar author is using by simply recognizing wether the states
are real (linear polarization) or complex (circular polarization).



5.2. QUANTIZED MAXWELL FIELD 91

5.1.6 Linear polarization vectors in Coulomb gauge

5.1.7 Circular polarization vectors

5.1.8 Fourier expansion

5.2 Quantized Maxwell field

5.2.1 Creation & annihilation operators

5.3 Photon propagator

5.4 Gupta-Bleuler quantization

5.5 Proca field



92 CHAPTER 5. ELECTROMAGNETIC FIELD



Chapter 6

S-matrix, cross section &
Wick’s theorem

Our Feynman diagram series is going to come from an expansion of the so-
called Scattering Matrix (or S-matrix). Each term in this S-matrix expan-
sion will represent a particular Feynman diagram. The S-matrix expansion
looks very similar to something which occurs in non-relativistic quantum
mechanics, namely the expansion of the time evolution operator. Thus we
will study that first.

6.1 Schrodinger Time Evolution Operator

Recall the time-dependent Schrodinger equation (SE)

H|α(t)〉 = ih̄
∂

∂t
|α(t)〉

Define the time evolution operator [Mandl & Shaw, pg. 101, Leon, pg. 63,
Sakurai]

|α(t)〉 ≡ U(t, t0)|α(t0)〉
and upon substitution into the SE gives

HU(t, t0)|α(t0)〉 = ih̄
∂

∂t
U(t, t0)|α(t0)〉

but ∂
∂t does not operate on |α(t0)〉 because t0 is fixed. Thus we can ‘cancel’

|α(t0)〉 to arrive at the operator equation

HU(t, t0) = ih̄
∂

∂t
U(t, t0)
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A schematic solution is

U(t, t0) = e−
i
h̄
H(t−t0)

However let’s solve the equation more rigorously. We solve for U(t, t0) by
integrating both sides to give

U(t, t0)− U(t0, t0) =
1
ih̄

∫ t

t0
H(t1)U(t1, t0)dt1

and with the boundary condition

U(t0, t0) = 1

we have

U(t, t0) = 1− i

h̄

∫ t

t0
dt1 H(t1)U(t1, t0)

This is solved by iteration as follows

U(t, t0) = 1− i

h̄

∫ t

t0
dt1 H(t1)U(t1, t0)

= 1− i

h̄

∫ t

t0
dt1 H(t1)

[
1− i

h̄

∫ t1

t0
dt2 H(t2)U(t2, t0)

]
= 1 +

(−i
h̄

)∫ t

t0
dt1 H(t1) +

(−i
h̄

)2 ∫ t

t0
dt1

∫ t1

t0
dt2 H(t1)H(t2)U(t2, t0)

= 1 +
(−i
h̄

)∫ t

t0
dt1 H(t1) +

(−i
h̄

)2 ∫ t

t0
dt1

∫ t1

t0
dt2 H(t1)H(t2)×

×
[
1− i

h̄

∫ t2

t0
dt3 H(t3)U(t3, t0)

]
= 1 +

(−i
h̄

)∫ t

t0
dt1 H(t1) +

(−i
h̄

)2 ∫ t

t0
dt1

∫ t1

t0
dt2 H(t1)H(t2)

+
(−i
h̄

)3 ∫ t

t0
dt1

∫ t1

t0
dt2

∫ t2

t0
dt3 H(t1)H(t2)H(t3) + · · ·

or

U(t, t0) = 1 +
∞∑
n=1

(−i
h̄

)n ∫ t

t0
dt1

∫ t1

t0
dt2 · · ·

∫ tn−1

t0
dtn H(t1) · · ·H(tn)
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which is the first version of our expansion of the time evolution operator.
Two other ways of writing this are

U(t, t0) = 1 +
∞∑
n=1

1
n!

(−i
h̄

)n ∫ t

t0
dt1

∫ t

t0
dt2 · · ·

∫ t

t0
dtn T [H(t1) · · ·H(tn)]

≡ T e
−i/h̄

∫ t
t0
H(t′)dt′

[Leon, pg. 64; Merzbacher, pg. 475] where the last expression is just a formal
way of writing the formula above [Leon, pg. 64] and recall

ex = 1 + x+
x2

2!
+
x3

3!
+ · · · = 1 +

∞∑
n=1

1
n!
xn

. Hatfield, pg. 52-53 gives a good example as to why we introduce time
ordered product. See also Guidry, pg. 99.

6.1.1 Time Ordered Product

In the above formulae we introduced the time ordered product which we
now define for two terms

T [A(t1)B(t2)]
(2! combinations)

≡
{
A(t1)B(t2) if t1 > t2
B(t2)A(t1) if t2 > t1

≡ θ(t1 − t2)A(t1)B(t2) + θ(t2 − t1)B(t2)A(t1)

where

θ(x− y) ≡
{

1 if x > y
0 if x < y

The time ordered product of three terms is defined as

T [A(t1)B(t2)C(t3)]
(3! combinations)

≡



A(t1)B(t2)C(t3) if t1 > t2 > t3
A(t1)C(t3)B(t2) if t1 > t3 > t2
B(t2)A(t1)C(t3) if t2 > t1 > t3
B(t2)C(t3)A(t1) if t2 > t3 > t1
C(t3)A(t1)B(t2) if t3 > t1 > t2
C(t3)B(t2)A(t1) if t3 > t2 > t1

≡ θ(t1 − t2)θ(t2 − t3)A(t1)B(t2)C(t2) + θ(t1 − t3)θ(t3 − t2)A(t1)C(t3)B(t2)
+θ(t2 − t1)θ(t1 − t3)B(t2)A(t1)C(t3) + θ(t2 − t3)θ(t3 − t1)B(t2)C(t3)A(t1)
+θ(t3 − t1)θ(t1 − t2)C(t3)A(t1)B(t2) + θ(t3 − t2)θ(t2 − t1)C(t3)B(t2)A(t1)
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Notice that there are n! combinations for n operators. This explains the
1
n! term appearing in the expansion for U .

[do Problem 8.1]

6.2 Schrodinger, Heisenberg and Dirac (Interac-
tion) Pictures

Reference: [Mandl and Shaw, pg. 22]

One can do classical mechanics with either the Newtonian, Lagrange or
Hamilton formulation of mechanics. In each formulation the equations are
different. Although not exactly analogous, there are three popular ways to
work in quantum mechanics known as the Schrodinger, Heisenberg or Dirac
pictures. The Dirac picture is often also called the Interaction picture.

In the usual formulation of quantum mechanics via the Schrodinger equa-
tion, i.e. in the Schrodinger picture, the operators are frozen in time and the
states evolve in time. The opposite is true in the Heisenberg picture.

In the Interaction picture, which we shall use extensively, the Hamilto-
nian is split into a fre particle piece and an interaction piece

H ≡ H0 +HI

then HI evolves and H0 is frozen.

Picture Operators State Vectors
Schrodinger Frozen Evolve
Heisenberg Evolve Frozen
Dirac (Interaction) Evolve Evolve

In time dependent perturbation theory one considers potentials like U =
E0 cosωt (e.g. oscillating electromagnetic field) in the Schrodinger picture
(SP). U is part of H and so what does it mean to say that operators are
frozen in the SP? What we mean is that the state vectors |α〉 obey an
equation of motion H|α〉 = ih̄ ∂

∂t |α〉 and the operators do not. Vice-versa for
the Heisenberg picture.

We shall label Schrodinger, Heisenberg, Interaction picture states as
|α〉S , |α〉H , |α〉I and operators as OS , OH , OI .

Recall the Schrodinger picture of NRQM

H|α(t)〉S = ih̄
∂

∂t
|α(t)〉S
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and the Schrodinger state vectors evolve in time according to

|α(t)〉S ≡ U(t, t0)|α(t0)〉S
where U(t, t0) is our time evolution operator.

Define Heisenberg picture states as

|α〉H ≡ U†|α(t)〉S = |α(t0)〉S
which is clearly frozen in time. (We have used UU† = 1). Define Heisenberg
operators

OH(t) ≡ U†OSU
which clearly evolves in time because OS is frozen but U† and U carry time
dependence.

Now the important thing about the Heisenberg and Schrodinger pictures
is that expectation values remain the same in both pictures. We must have
this for the physics to be the same. Expectation values are the same, i.e.

S〈β(t)|OS |α(t)〉S = H〈β|OH(t)|α〉H
[do Problem 8.2]

6.2.1 Heisenberg Equation

In the Schrodinger representation the state vectors evolve in time and the
Schrodinger equation describes their time evolution. In the Heisenberg pic-
ture the operators evolve in time, so what is the equation governing the
operator time evolution? It is called the Heisenberg equation of motion (for
operators). It is obtained by differentiating OH(t) ≡ U†OSU to give

[OH(t), H] = ih̄
d

dt
OH(t)

[do Problems 8.3 and 8.4]

6.2.2 Interaction Picture

We use the Dirac or Interaction representation if the Hamiltonian can be
split into two parts; a free particle piece H0 and an interaction piece HI .
(Unfortunately we have the notation HI

I for the interaction Hamiltonian in
the Interaction picture.) Thus

H = H0 +HI
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where, at this stage, HI means interaction Hamiltonian, not Interaction
picture.

Define a time evolution operator for H0 alone as

U0 ≡ U0(t, t0) ≡ e− i
h̄
H0(t−t0)

and
|α(t)〉I ≡ U

†
0 |α(t)〉S

and
OI(t) ≡ U†0OSU0

Now
HI

0 = HS
0 ≡ H0

(exercise: show this)
Manipulating the previous two equations we get

[OI(t), H0] = ih̄
d

dt
OI(t)

and
HI
I (t)|α(t)〉I = ih̄

d

dt
|α(t)〉I

where
HI
I (t) = U†0HS

I U0 = e
i
h̄
H0(t−t0)HS

I e
− i
h̄
H0(t−t0)

[do Problems 8.5, 8.6, 8.7]
Now define a time evolution operator for HI alone as

|α(t)〉I ≡ UI |α(t0〉I

which leads to

HI
IUI = ih̄

d

dt
UI (6.1)

which has the rigorous solution

UI(t, t0) = 1 +
∞∑
n=1

1
n!

(−i
h̄

)n ∫ t

t0
dt1

∫ t

t0
dt2 · · ·

∫ tn−1

t0
dtn T [HI(t1) · · ·HI(tn)]

Now define the S-matrix

S ≡ U(∞,−∞)
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in other words
|α(∞)〉 ≡ S|α(−∞〉 = S|i〉

where |i〉 is the initial state. Thus

S = 1 +
∞∑
n=1

1
n!

(−i
h̄

)n ∫ ∞
−∞

dt1

∫ ∞
−∞

dt2 · · ·
∫ ∞
−∞

dtn T [HI(t1) · · ·HI(tn)

or in covariant form

S = 1 +
∞∑
n=1

1
n!

(−i
h̄

)n ∫
d4x1d

4x2 · · · d4xn T [HI(x1)HI(x2) · · ·HI(xn)]

which is the Dyson expansion of the S-matrix. This is an infinite series, each
term of which gets represented as a Feynman diagram.

Note that this expansion of the S-matrix does not rely on the Schrodinger
equation but comes from the general interaction picture and the opera-
tor equation of motion (6.1), which, although reminiscent of, is not the
Schrodinger equation but rather the operator equation of motion in the In-
teraction picture [Bj RQF 177].

6.3 Cross section and S-matrix

Consider the reaction

1 + 2→ 1′ + 2′ + 3′ + . . . n′

We shall be calculating an S-matrix element, but it always has common
factors. Pulling these out we are left with a quantityM called the invariant
amplitude. A set of Feynman rules actually gives −iM [Griffiths]. Cross
sections are writtem directly in terms of M. The relation between the S-
matrix element and the invariant amplitude is given by [Greiner FQ 267,
Greiner QED 221]

< f |S|i >= i(2π)4 δ4(p1 + p2 −
n∑
i=1

p′i )M Π2
i=1

√
Ni

2Ei(2π)3
Πn
i=1

√
N ′i

2E′i(2π)3

where the normalization factors are Ni = 1 for scalar bosons and photons
and Ni = 2m for fermions. [Greiner FQ 267]
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A set of Feynman rules actually gives −iM [Griffiths, 1987]. The differ-
ential cross section is given directly in terms of the invariant amplitude as
[RPP, pg. 176; PPB, pg. 219; Griffiths, pg. 198]

dσ =
(2π)4|M|2

4
√

(p1.p2)2 −m2
1m

2
2

dΦn(p1 + p2; p3 . . . pn+2)

with [RPP, pg. 175; PPB, pg. 215; Griffiths, pg. 198]

dΦn(P ; p1 . . . pn) ≡ δ4

(
P −

n∑
i=1

pi

)
n∑
i=1

d3pi
(2π)32Ei

Thus for the reaction
1 + 2→ 3 + 4 · · ·n

we have [Griffiths, pg. 198]

dΦn(p1 + p2; p3 · · · pn) = δ4(p1 + p2 − p3 − p4 − · · · pn)×

× d3p3

(2π)32E3

d3p4

(2π)32E4
· · · d3pn

(2π)32En

giving [Griffiths, pg. 198]

dσ =
(2π)4|M|2

4
√

(p1 · p2)2 −m2
1m

2
2

d3p3

(2π)32E3

d3p4

(2π)32E4

· · · d3pn
(2π)32En

δ4(p1 + p2 − p3 − p4 − · · · pn)

For the reaction
1 + 2→ 3 + 4

dσ =
(2π)4|M|2

4
√

(p1 · p2)2 −m2
1m

2
2

d3p3

(2π)32E3

d3p4

(2π)32E4
δ4(p1 + p2 − p3 − p4)

with [Griffiths, pg. 200]

δ4(p1 + p2 − p3 − p4) = δ(E1 + E2 − E3 − E4)δ3(~p1 + ~p2 − ~p3 − ~p4)

giving

dσ

d3p4
=

(2π)4|M|2
4√

d3p3

(2π)32E3

1
(2π)32E4

δ(E1+E2−E3−E4)δ3(~p1+~p2−~p3−p4)
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so that∫
dσ

d3p4
d3p4 = dσ =

2π|M|2

8E4

√
(p1 · p2)2 −m2

1m
2
2

d3p3

(2π)32E3
δ(E1 +E2−E3−E4)

giving the Lorentz invariant differential cross section for production of par-
ticle 3 as

dσ

d3p3/E3
=

|M|2

64π2E4

√
(p1 · p2)2 −m2

1m
2
2

δ(E1 + E2 − E3 − E4)

NNN PUT IN GRIFFITHS STATISTICAL FACTOR S (EASY!)
ALSO WRITE DOWN Λ

6.4 Wick’s theorem

6.4.1 Contraction

6.4.2 Statement of Wick’s theorem

References and Notes
Mandl & Shaw, Teller, Sakurai QM, Leon, Merzbacher

S matrix and G function Bj RQM 83,97,100

S matrix without SE, Bj RQF 177
For a derivation of the S-matrix based on Green function techniques,

and in- and out-states, see Bjorken and Dell, RQF 177; RQM 83, 97, 100.
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Chapter 7

QED

7.1 QED Lagrangian

7.2 QED S-matrix

7.2.1 First order S-matrix
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7.2.2 Second order S-matrix

From the Dyson expansion, the second order term in the S-matrix is (with
h̄ = 1) [GreinerFQ 238]

S(2) =
1
2!

(−i)2
∫
d4x1d

4x2T [H(x1)H(x2)]

=
1
2!

(−iq)2
∫
d4x1d

4x2T [ : ψ̄(x1)γµψ(x1)Aµ(x1) : : ψ̄(x2)γνψ(x2)Aν(x2) : ]

=
(−iq)2

2!

∫
d4x1d

4x2 : ψ̄(x1)γµψ(x1)ψ̄(x2)γνψ(x2)Aµ(x1)Aν(x2) : (a)

+
(−iq)2

2!

∫
d4x1d

4x2 : ψ̄(x1)γµψ(x1)ψ̄(x2)γνψ(x2)Aµ(x1)Aν(x2) : (b)

+
(−iq)2

2!

∫
d4x1d

4x2 : ψ̄(x1)γµψ(x1)ψ̄(x2)γνψ(x2)Aµ(x1)Aν(x2) : (c)

+
(−iq)2

2!

∫
d4x1d

4x2 : ψ̄(x1)γµψ(x1)ψ̄(x2)γνψ(x2)Aµ(x1)Aν(x2) : (d)

+
(−iq)2

2!

∫
d4x1d

4x2 : ψ̄(x1)γµψ(x1)ψ̄(x2)γνψ(x2)Aµ(x1)Aν(x2) : (e)

+
(−iq)2

2!

∫
d4x1d

4x2 : ψ̄(x1)γµψ(x1)ψ̄(x2)γνψ(x2)Aµ(x1)Aν(x2) : (f)

+
(−iq)2

2!

∫
d4x1d

4x2 : ψ̄(x1)γµψ(x1)ψ̄(x2)γνψ(x2)Aµ(x1)Aν(x2) : (g)

+
(−iq)2

2!

∫
d4x1d

4x2 : ψ̄(x1)γµψ(x1)ψ̄(x2)γνψ(x2)Aµ(x1)Aν(x2) : (h)

In this expansion we have used the modification to Wick’s theorem that
says that “no equal time contractions are allowe” (no e.t.c. - see before).
As previously mentioned Greiner states this somewhat differently [Greiner
238] but the result is the same. Greiner has a nice discussion [Greiner 238]
showing that this prescription eliminates the so-called “tadpole” diagrams.

Also in the above expansion we don’t include contributions of the form

ψ(x1)ψ(x2) = ψ̄(x1)ψ̄(x2) = 0

because they give zero contribution. [Schwabl 337, GreinerFQ 238]
We now need to introduce some additional Feynman diagrams corre-

sponding to the above contractions. These are illustrated in the figure be-
low. Note that the photon diagrams do not have an arrow associated with
them since each photon is its own antiparticle. [Greiner FQ 236]
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x2

x1

(a)

x2

x1

(b)

Fig. x.x
(a) Fermion contraction ψ(x2)ψ̄(x1) = iSF (x2 − x1)

(b) Photon contraction Aµ(x2)Aν(x1) = iSF (x2 − x1)

Using the above diagrams and also the ones shown previously we are in
a position to draw the Feynman diagrams corresponding to all the terms in
the second order S-matrix. These are shown in the Figure below.

Fig. Feynman diagrams for 2nd order S-matrix
NNN identical to GreinerFQ, fig 8.5, p. 239
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7.2.3 First order S-matrix elements

We previously considered the first order S-matrix, and we wish now to evlu-
ate S-matrix elements. For definiteness let’s consider the diagram of Fig.
7.4 (b) which corresponds to an electron radiating a photon. In that case
the initial state would be creation of an electron from the vacuum, i.e.

|i >≡ b†~k1,s1
|0 >

and the final state consists of the scattered electron together with the pro-
duced photon, i.e.

|f >≡ b†~k′1,s′1
a†~k,λ|0 >

or

< f | ≡< 0|a~k,λb~k′1,s′1
We wish to evaluate the matrix element < f |S|i > and the first order S-
matrix S(1) contains 8 terms. However all but one (the second) of these terms
will be zero, if the |i > and < f | states above are used. To illustrate this
let’s evaluate the first of the eight < f |S(1)|i > terms, denoted < f |S(1)

1 |i >.
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7.2.4 Second order S-matrix elements

Electron-electron (Moeller) scattering

7.2.5 Invariant amplitude and lepton tensor

Electron-muon scattering

Invariant amplitude

7.3 Casimir’s trick & Trace theorems

7.3.1 Average over initial states / Sum over final states

Polarized final states / Unpolarized initial staes

Unpolarized initial and final states

7.3.2 Casimir’s trick


